标签:max loading 技术 rev while NPU return const ||
非递归前序遍历二叉树
1 void preTraverse(const BiTree &T){ 2 //initialStack(stack) 3 BiTree stack[MAX]; 4 int top=-1; 5 BiTree p=T; 6 //while(!stackEmpty(stack)||p) 7 while(p||top>-1){ 8 while(p){ 9 //visit(p->data) 10 cout<<p->data<<" "; 11 //push(stack,p) 12 stack[++top]=p; 13 p=p->lChild; 14 } 15 //pop(stack,p) 16 p=stack[top--]; 17 p=p->rChild; 18 } 19 }
非递归中序遍历二叉树
1 void inTraverse(const BiTree &T){ 2 //initialStack(stack) 3 BiTree stack[MAX]; 4 int top=-1; 5 BiTree p=T; 6 //while(p||!stackEmpty(stack)) 7 while(p||top>-1){ 8 if(p){ 9 while(p){ 10 //push(stack,p) 11 stack[++top]=p; 12 p=p->lChild; 13 } 14 }else{ 15 //pop(stack,p) 16 p=stack[top--]; 17 //visit(p->data) 18 cout<<p->data<<" "; 19 p=p->rChild; 20 } 21 } 22 }
非递归后序遍历二叉树(leetcode145)
void postTraverse(const BiTree &T){ stack<BiTree>s; BiTree p=T,prev=NULL; while(p||!s.empty()){ while(p){ s.push(p); p=p->lChild; } p=s.top(); s.pop(); if(p->rChild==NULL||p->rChild==prev){ cout<<p->data<<" "; prev=p; p=NULL; }else{ s.push(p); p=p->rChild; } } }
完整实现(先用前序+中序构造二叉树)
#include<iostream> #include<stack> #define MAX 100 using namespace std; typedef struct BiTNode{ public: int data; struct BiTNode *lChild,*rChild; }BiTNode,*BiTree; void preTraverse(const BiTree &T){ //initialStack(stack) BiTree stack[MAX]; int top=-1; BiTree p=T; //while(!stackEmpty(stack)||p) while(p||top>-1){ while(p){ //visit(p->data) cout<<p->data<<" "; //push(stack,p) stack[++top]=p; p=p->lChild; } //pop(stack,p) p=stack[top--]; p=p->rChild; } } void inTraverse(const BiTree &T){ BiTree stack[MAX]; int top=-1; BiTree p=T; //while(p||!stackEmpty(stack)) while(p||top>-1){ if(p){ while(p){ //push(stack,p) stack[++top]=p; p=p->lChild; } }else{ //pop(stack,p) p=stack[top--]; //visit(p->data) cout<<p->data<<" "; p=p->rChild; } } } void postTraverse(const BiTree &T){ //initialStack(stack) stack<BiTree>s; BiTree p=T,prev=NULL; while(p||!s.empty()){ while(p){ s.push(p); p=p->lChild; } p=s.top(); s.pop(); if(p->rChild==NULL||p->rChild==prev){ cout<<p->data<<" "; prev=p; p=NULL; }else{ s.push(p); p=p->rChild; } } } bool preAndInCreate(BiTree &T,int pre[],int in[],int length){ if(length<=0){ T=NULL; }else{ int i; T=new BiTNode; T->data=pre[0]; for(i=0;i<length&&in[i]!=pre[0];++i); if(i>length) return false; preAndInCreate(T->lChild,pre+1,in,i); preAndInCreate(T->rChild,pre+i+1,in+i+1,length-1-i); } return true; } bool deleteTree(BiTree &T){ if(T){ BiTree L=T->lChild; BiTree R=T->rChild; delete T; T=NULL; deleteTree(L); deleteTree(R); } } int main(){ int n; cout<<"Input the number of nodes : "; cin>>n; cout<<"Input preorder tree : "; int pre[n],in[n]; for(int i=0;i<n;++i) cin>>pre[i]; cout<<"Input inorder tree : "; for(int i=0;i<n;++i) cin>>in[i]; BiTree T=NULL; preAndInCreate(T,pre,in,n); cout<<"\nthe tree in preorder : "; preTraverse(T); cout<<"\nthe tree in inorder : "; inTraverse(T); cout<<"\nthe tree in postorder : "; postTraverse(T); deleteTree(T); }
标签:max loading 技术 rev while NPU return const ||
原文地址:https://www.cnblogs.com/NoerForest/p/14598874.html