标签:dep keras ble softmax ssi 格式 slice UNC truncate
import tensorflow as tf from tensorflow import keras from tensorflow.keras import datasets import os os.environ[‘TF_CPP_MIN_LOG_LEVEL‘] = ‘2‘ # x: [60k, 28, 28], [10, 28, 28] # y: [60k], [10k] (x, y), (x_test, y_test) = datasets.mnist.load_data() # x: [0~255] => [0~1.] x = tf.convert_to_tensor(x, dtype=tf.float32) / 255. y = tf.convert_to_tensor(y, dtype=tf.int32) x_test = tf.convert_to_tensor(x_test, dtype=tf.float32) / 255. y_test = tf.convert_to_tensor(y_test, dtype=tf.int32) print(x.shape, y.shape, x.dtype, y.dtype) print(tf.reduce_min(x), tf.reduce_max(x)) print(tf.reduce_min(y), tf.reduce_max(y)) train_db = tf.data.Dataset.from_tensor_slices((x,y)).batch(128) test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test)).batch(128) train_iter = iter(train_db) sample = next(train_iter) print(‘batch:‘, sample[0].shape, sample[1].shape) # [b, 784] => [b, 256] => [b, 128] => [b, 10] # [dim_in, dim_out], [dim_out] w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1)) b1 = tf.Variable(tf.zeros([256])) w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1)) b2 = tf.Variable(tf.zeros([128])) w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1)) b3 = tf.Variable(tf.zeros([10])) lr = 1e-3 for epoch in range(100): # iterate db for 10 for step, (x, y) in enumerate(train_db): # for every batch # x:[128, 28, 28] # y: [128] # [b, 28, 28] => [b, 28*28] x = tf.reshape(x, [-1, 28*28]) with tf.GradientTape() as tape: # tf.Variable # x: [b, 28*28] # h1 = x@w1 + b1 # [b, 784]@[784, 256] + [256] => [b, 256] + [256] => [b, 256] + [b, 256] h1 = x@w1 + tf.broadcast_to(b1, [x.shape[0], 256]) h1 = tf.nn.relu(h1) # [b, 256] => [b, 128] h2 = h1@w2 + b2 h2 = tf.nn.relu(h2) # [b, 128] => [b, 10] out = h2@w3 + b3 # compute loss # out: [b, 10] # y: [b] => [b, 10] y_onehot = tf.one_hot(y, depth=10) # mse = mean(sum(y-out)^2) # [b, 10] loss = tf.square(y_onehot - out) # mean: scalar loss = tf.reduce_mean(loss) # compute gradients grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3]) # print(grads) # w1 = w1 - lr * w1_grad w1.assign_sub(lr * grads[0]) b1.assign_sub(lr * grads[1]) w2.assign_sub(lr * grads[2]) b2.assign_sub(lr * grads[3]) w3.assign_sub(lr * grads[4]) b3.assign_sub(lr * grads[5]) if step % 100 == 0: print(epoch, step, ‘loss:‘, float(loss)) # test/evluation # [w1, b1, w2, b2, w3, b3] total_correct, total_num = 0, 0 for step, (x,y) in enumerate(test_db): # [b, 28, 28] => [b, 28*28] x = tf.reshape(x, [-1, 28*28]) # [b, 784] => [b, 256] => [b, 128] => [b, 10] h1 = tf.nn.relu(x@w1 + b1) h2 = tf.nn.relu(h1@w2 + b2) out = h2@w3 +b3 # out: [b, 10] ~ R # prob: [b, 10] ~ [0, 1] prob = tf.nn.softmax(out, axis=1) # [b, 10] => [b] # int64!!! pred = tf.argmax(prob, axis=1) pred = tf.cast(pred, dtype=tf.int32) # y: [b] # [b], int32 # print(pred.dtype, y.dtype) correct = tf.cast(tf.equal(pred, y), dtype=tf.int32) correct = tf.reduce_sum(correct) total_correct += int(correct) total_num += x.shape[0] acc = total_correct / total_num print(‘test acc:‘, acc)
import tensorflow as tf import tensorflow.keras as keras import os os.environ[‘TF_CPP_MIN_LOG_LEVEL‘] = ‘2‘ def prepare_mnist_features_and_labels(x,y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x,y def mnist_dataset(): (x,y), (x_test,y_test) = keras.datasets.fashion_mnist.load_data() #numpy中的格式 y = tf.one_hot(y, depth=10) #[10k] ==> [10k,10]的tensor y_test = tf.one_hot(y_test, depth=10) ds = tf.data.Dataset.from_tensor_slices((x,y)) ds = ds.map(prepare_mnist_features_and_labels) #数据预处理,注意:tf.map中传进的参数 ds = ds.shuffle(60000).batch(100) #随机打散,读取一个batch的样本 ds_val = tf.data.Dataset.from_tensor_slices((x_test,y_test)) ds_val = ds_val.map(prepare_mnist_features_and_labels) ds_val = ds_val.shuffle(10000).batch(100) return ds, ds_val def main(): ds, ds_val = mnist_dataset() print("训练集信息如下:") iteration_ds = iter(ds) iter_ds = next(iteration_ds) print(iter_ds[0].shape, iter_ds[1].shape) print("测试集信息如下:") iteration_ds_val = iter(ds_val) iter_ds_val = next(iteration_ds_val) print(iter_ds_val[0].shape, iter_ds_val[1].shape) if __name__ == ‘__main__‘: main()
标签:dep keras ble softmax ssi 格式 slice UNC truncate
原文地址:https://www.cnblogs.com/zhangxianrong/p/14612333.html