码迷,mamicode.com
首页 > 其他好文 > 详细

接雨水——用dp或者双指针是最直观的解法

时间:2021-04-19 16:00:11      阅读:0      评论:0      收藏:0      [点我收藏+]

标签:origin   amp   arc   间接   括号匹配   title   err   rop   stack   

LeetCode 题解 | 42.接雨水

42.接雨水

接雨水 - 力扣(LeetCode)?leetcode-cn.com技术图片

题目描述

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

 

技术图片

上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。感谢 Marcos 贡献此图。

示例:

输入: [0,1,0,2,1,0,1,3,2,1,2,1]
输出: 6

 

解决方案

思路

黑色的看成墙,蓝色的看成水,宽度一样,给定一个数组,每个数代表从左到右墙的高度,求出能装多少单位的水。也就是图中蓝色正方形的个数。

解法一:按列求

求每一列的水,我们只需要关注当前列,以及左边最高的墙,右边最高的墙就够了。装水的多少,当然根据木桶效应,我们只需要看左边最高的墙和右边最高的墙中较矮的一个就够了。所以,根据较矮的那个墙和当前列的墙的高度可以分为三种情况。

  • 较矮的墙的高度大于当前列的墙的高度
技术图片

把正在求的列左边最高的墙和右边最高的墙确定后,然后为了方便理解,我们把无关的墙去掉。

技术图片

这样就很清楚了,现在想象一下,往两边最高的墙之间注水。正在求的列会有多少水?很明显,较矮的一边,也就是左边的墙的高度,减去当前列的高度就可以了,也就是 2 - 1 = 1,可以存一个单位的水。

  • 较矮的墙的高度小于当前列的墙的高度
技术图片

同样的,我们把其他无关的列去掉。

技术图片

想象下,往两边最高的墙之间注水。正在求的列会有多少水?

正在求的列不会有水,因为它大于了两边较矮的墙。

  • 较矮的墙的高度等于当前列的墙的高度。

和上一种情况是一样的,不会有水。

技术图片

明白了这三种情况,程序就很好写了,遍历每一列,然后分别求出这一列两边最高的墙。找出较矮的一端,和当前列的高度比较,结果就是上边的三种情况。

 

Java 实现

public int trap(int[] height) {
    int sum = 0;
    //最两端的列不用考虑,因为一定不会有水。所以下标从 1 到 length - 2
    for (int i = 1; i < height.length - 1; i++) {
        int max_left = 0;
        //找出左边最高
        for (int j = i - 1; j >= 0; j--) {
            if (height[j] > max_left) {
                max_left = height[j];
            }
        }
        int max_right = 0;
        //找出右边最高
        for (int j = i + 1; j < height.length; j++) {
            if (height[j] > max_right) {
                max_right = height[j];
            }
        }
        //找出两端较小的
        int min = Math.min(max_left, max_right);
        //只有较小的一段大于当前列的高度才会有水,其他情况不会有水
        if (min > height[i]) {
            sum = sum + (min - height[i]);
        }
    }
    return sum;
}

时间复杂度: 技术图片,遍历每一列需要 技术图片 ,找出左边最高和右边最高的墙加起来刚好又是一个 技术图片 ,所以是 技术图片 。

?空间复杂度:O(1)。

解法二: 动态规划

我们注意到,解法二中。对于每一列,我们求它左边最高的墙和右边最高的墙,都是重新遍历一遍所有高度,这里我们可以优化一下。

首先用两个数组,max_left [i]代表第 i 列左边最高的墙的高度,max_right[i] 代表第 i 列右边最高的墙的高度。(一定要注意下,第 i 列左(右)边最高的墙,是不包括自身的,和力扣上边的讲的有些不同)

对于 max_left我们其实可以这样求。

max_left [i] = Max(max_left [i-1],height[i-1])。它前边的墙的左边的最高高度和它前边的墙的高度选一个较大的,就是当前列左边最高的墙了。对于 max_right我们可以这样求。max_right[i] = Max(max_right[i+1],height[i+1]) 。它后边的墙的右边的最高高度和它后边的墙的高度选一个较大的,就是当前列右边最高的墙了。

这样,我们再利用解法二的算法,就不用在 for 循环里每次重新遍历一次求 max_left 和 max_right 了。

 

Java 实现

public int trap(int[] height) {
    int sum = 0;
    int[] max_left = new int[height.length];
    int[] max_right = new int[height.length];
    
    for (int i = 1; i < height.length - 1; i++) {
        max_left[i] = Math.max(max_left[i - 1], height[i - 1]);
    }
    for (int i = height.length - 2; i >= 0; i--) {
        max_right[i] = Math.max(max_right[i + 1], height[i + 1]);
    }
    for (int i = 1; i < height.length - 1; i++) {
        int min = Math.min(max_left[i], max_right[i]);
        if (min > height[i]) {
            sum = sum + (min - height[i]);
        }
    }
    return sum;
}

时间复杂度:O(n)。

空间复杂度:O(n),用来保存每一列左边最高的墙和右边最高的墙。

 

解法三:双指针

动态规划中,我们常常可以对空间复杂度进行进一步的优化。

例如这道题中,可以看到,max_left [ i ] 和 max_right [ i ] 数组中的元素我们其实只用一次,然后就再也不会用到了。所以我们可以不用数组,只用一个元素就行了。我们先改造下 max_left

public int trap(int[] height) {
    int sum = 0;
    int max_left = 0;
    int[] max_right = new int[height.length];
    for (int i = height.length - 2; i >= 0; i--) {
        max_right[i] = Math.max(max_right[i + 1], height[i + 1]);
    }
    for (int i = 1; i < height.length - 1; i++) {
        max_left = Math.max(max_left, height[i - 1]);
        int min = Math.min(max_left, max_right[i]);
        if (min > height[i]) {
            sum = sum + (min - height[i]);
        }
    }
    return sum;
}

我们成功将 max_left 数组去掉了。但是会发现我们不能同时把 max_right 的数组去掉,因为最后的 for 循环是从左到右遍历的,而 max_right 的更新是从右向左的。

所以这里要用到两个指针,left 和 right,从两个方向去遍历。

那么什么时候从左到右,什么时候从右到左呢?根据下边的代码的更新规则,我们可以知道

max_left = Math.max(max_left, height[i - 1]);

height [ left - 1] 是可能成为 max_left 的变量,同理,height [ right + 1 ] 是可能成为 right_max 的变量。

只要保证 height [ left - 1 ] < height [ right + 1 ] ,那么 max_left 就一定小于 max_right

因为 max_left 是由 height [ left - 1] 更新过来的,而 height [ left - 1 ] 是小于 height [ right + 1] 的,而 height [ right + 1 ] 会更新max_right,所以间接的得出 max_left 一定小于 max_right

反之,我们就从右到左更。

 

Java 实现

public int trap(int[] height) {
    int sum = 0;
    int max_left = 0;
    int max_right = 0;
    int left = 1;
    int right = height.length - 2; // 加右指针进去
    for (int i = 1; i < height.length - 1; i++) {
        //从左到右更
        if (height[left - 1] < height[right + 1]) {
            max_left = Math.max(max_left, height[left - 1]);
            int min = max_left;
            if (min > height[left]) {
                sum = sum + (min - height[left]);
            }
            left++;
        //从右到左更
        } else {
            max_right = Math.max(max_right, height[right + 1]);
            int min = max_right;
            if (min > height[right]) {
                sum = sum + (min - height[right]);
            }
            right--;
        }
    }
    return sum;
}

时间复杂度: 技术图片 。

空间复杂度: 技术图片 。

 

?解法四:栈

技术图片

说到栈,我们肯定会想到括号匹配了。我们仔细观察蓝色的部分,可以和括号匹配类比下。每次匹配出一对括号(找到对应的一堵墙),就计算这两堵墙中的水。

我们用栈保存每堵墙。

当遍历墙的高度的时候,如果当前高度小于栈顶的墙高度,说明这里会有积水,我们将墙的高度的下标入栈。

如果当前高度大于栈顶的墙的高度,说明之前的积水到这里停下,我们可以计算下有多少积水了。计算完,就把当前的墙继续入栈,作为新的积水的墙。

总体的原则就是,

  1. 当前高度小于等于栈顶高度,入栈,指针后移。
  2. 当前高度大于栈顶高度,出栈,计算出当前墙和栈顶的墙之间水的多少,然后计算当前的高度和新栈的高度的关系,重复第 2 步。直到当前墙的高度不大于栈顶高度或者栈空,然后把当前墙入栈,指针后移。

我们看具体的例子。

  • 首先将 height [ 0 ] 入栈。然后 current 指向的高度大于栈顶高度,所以把栈顶 height [ 0 ] 出栈,然后栈空了,再把 height [ 1 ] 入栈。current 后移。
技术图片
  • 然后 current 指向的高度小于栈顶高度,height [ 2 ] 入栈,current 后移。
技术图片
  • 然后 current 指向的高度大于栈顶高度,栈顶 height [ 2 ] 出栈。计算 height [ 3 ] 和新的栈顶之间的水。计算完之后继续判断 current 和新的栈顶的关系。
技术图片
  • current 指向的高度大于栈顶高度,栈顶 height [ 1 ] 出栈,栈空。所以把 height [ 3 ] 入栈。currtent 后移。
技术图片
  • 然后 current 指向的高度小于栈顶 height [ 3 ] 的高度,height [ 4 ] 入栈。current 后移。
技术图片
  • 然后 current 指向的高度小于栈顶 height [ 4 ] 的高度,height [ 5 ] 入栈。current 后移。
技术图片
  • 然后 current 指向的高度大于栈顶 height [ 5 ] 的高度,将栈顶 height [ 5 ] 出栈,然后计算 current 指向的墙和新栈顶 height [ 4 ] 之间的水。计算完之后继续判断 current 的指向和新栈顶的关系。此时 height [ 6 ] 不大于栈顶height [ 4 ] ,所以将 height [ 6 ] 入栈。current 后移。
技术图片
  • 然后 current 指向的高度大于栈顶高度,将栈顶 height [ 6 ] 出栈。计算和新的栈顶 height [ 4 ] 组成两个边界中的水。然后判断 current 和新的栈顶 height [ 4 ] 的关系,依旧是大于,所以把 height [ 4 ] 出栈。计算 current 和 新的栈顶 height [ 3 ] 之间的水。然后判断 current 和新的栈顶 height [ 3 ] 的关系,依旧是大于,所以把 height [ 3 ] 出栈,栈空。将 current 指向的 height [ 7 ] 入栈。current 后移。

其实不停的出栈,可以看做是在找与 7 匹配的墙,也就是 3 。

技术图片

而对于计算 current 指向墙和新的栈顶之间的水,根据图的关系,我们可以直接把这两个墙当做之前解法三的 max_left 和 max_right,然后之前弹出的栈顶当做每次遍历的 height [ i ]。水量就是 Min ( max _ left ,max _ right ) - height [ i ],只不过这里需要乘上两个墙之间的距离。可以看下代码继续理解下。

 

Java 实现

public int trap6(int[] height) {
    int sum = 0;
    Stack<Integer> stack = new Stack<>();
    int current = 0;
    while (current < height.length) {
        //如果栈不空并且当前指向的高度大于栈顶高度就一直循环
        while (!stack.empty() && height[current] > height[stack.peek()]) {
            int h = height[stack.peek()]; //取出要出栈的元素
            stack.pop(); //出栈
            if (stack.empty()) { // 栈空就出去
                break; 
            }
            int distance = current - stack.peek() - 1; //两堵墙之前的距离。
            int min = Math.min(height[stack.peek()], height[current]);
            sum = sum + distance * (min - h);
        }
        stack.push(current); //当前指向的墙入栈
        current++; //指针后移
    }
    return sum;
}

时间复杂度:虽然 while 循环里套了一个 while 循环,但是考虑到每个元素最多访问两次,入栈一次和出栈一次,所以时间复杂度是 技术图片 。

空间复杂度: 技术图片 。栈的空间。

 

总结

解法一到解法二,利用动态规划,空间换时间,解法二到解法三,优化动态规划的空间,这一系列下来,让人心旷神怡。

 

本文作者:windliang

接雨水——用dp或者双指针是最直观的解法

标签:origin   amp   arc   间接   括号匹配   title   err   rop   stack   

原文地址:https://www.cnblogs.com/bonelee/p/14671004.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!