码迷,mamicode.com
首页 > 其他好文 > 详细

KNN K-Nearest-Neighbor K最近邻居

时间:2021-04-24 11:57:18      阅读:0      评论:0      收藏:0      [点我收藏+]

标签:平面   需要   http   dimens   大于   选择   数据结构   lambda   lam   

参考

https://www.cnblogs.com/wj-1314/p/10291284.html

一句话概括

在n维度空间中取距离目标点最近的K个样本,如果是分类问题,按照多数投票法取分类结果
如果是回归问题,取平均值

根据二分法衍生出来的K-D(K-Dimension K维度)算法可以加速KNN的查找过程

  1. 需要根据训练样本构造一颗二叉树,节点个数与训练样本数目一样,所以比较占用内存
  2. 参考 https://www.cnblogs.com/21207-iHome/p/6084670.html 对K-D 过程做了全部学习
    弄清楚了什么是与超平面相交,即当前最近距离 大于 目标点【当前选择的维度】- 二叉树节点【当前选择的维度】 ,就表示相交,需要进入另一半二叉树进行查找
    在构造KD树时候,可以按照维基百科说的轮换维度 ,也可选择方差最大的维度
  3. 贴上完整的KD树构造与搜索的代码
# -*- coding: utf-8 -*-

#from operator import itemgetter
import sys
from time import clock
from random import random
from math import sqrt
from collections import namedtuple

# 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
result = namedtuple("Result_tuple", "nearest_point  nearest_dist  nodes_visited")

# 产生一个k维随机向量,每维分量值在0~1之间
def random_point(k):
    return [random() for _ in range(k)]
 
# 产生n个k维随机向量 
def random_points(k, n):
    return [random_point(k) for _ in range(n)]
#reload(sys)
#sys.setdefaultencoding(‘utf8‘)
#note url :https://www.cnblogs.com/21207-iHome/p/6084670.html
#KD tree 
# kd-tree每个结点中主要包含的数据结构如下 
class KdNode(object):
    def __init__(self, dom_elt, split, left, right):
        self.dom_elt = dom_elt  # k维向量节点(k维空间中的一个样本点)
        self.split = split      # 整数(进行分割维度的序号)
        self.left = left        # 该结点分割超平面左子空间构成的kd-tree
        self.right = right      # 该结点分割超平面右子空间构成的kd-tree
 
 
class KdTree(object):
    def __init__(self, data):
        k = len(data[0])  # 数据维度
        #split 划分维度
        def CreateNode(split, data_set): # 按第split维划分数据集exset创建KdNode
            if not data_set:    # 数据集为空
                return None
            # key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较
            # operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象中的序号
            #data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序
            data_set.sort(key=lambda x: x[split])
            split_pos = len(data_set) // 2      # //为Python中的整数除法
            median = data_set[split_pos]        # 中位数分割点             
            split_next = (split + 1) % k        # cycle coordinates
            
            # 递归的创建kd树
            return KdNode(median, split, 
                          CreateNode(split_next, data_set[:split_pos]),     # 创建左子树
                          CreateNode(split_next, data_set[split_pos + 1:])) # 创建右子树
                                
        self.root = CreateNode(0, data)         # 从第0维分量开始构建kd树,返回根节点


# KDTree的前序遍历
def preorder(root):  
    print(root.dom_elt  )
    if root.left:      # 节点不为空
        preorder(root.left)  
    if root.right:  
        preorder(root.right)  
      
def test1():
    data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
    kd = KdTree(data)
    preorder(kd.root)


def find_nearest(tree, point):
    k = len(point) # 数据维度
    def travel(kd_node, target, max_dist):
        if kd_node is None:     
            return result([0] * k, float("inf"), 0) # python中用float("inf")和float("-inf")表示正负无穷
 
        nodes_visited = 1
        
        s = kd_node.split        # 进行分割的维度
        pivot = kd_node.dom_elt  # 进行分割的“轴”
        
        if target[s] <= pivot[s]:           # 如果目标点第s维小于分割轴的对应值(目标离左子树更近)
            nearer_node  = kd_node.left     # 下一个访问节点为左子树根节点
            further_node = kd_node.right    # 同时记录下右子树
        else:                               # 目标离右子树更近
            nearer_node  = kd_node.right    # 下一个访问节点为右子树根节点
            further_node = kd_node.left
 
        temp1 = travel(nearer_node, target, max_dist)  # 进行遍历找到包含目标点的区域
        
        nearest = temp1.nearest_point       # 以此叶结点作为“当前最近点”
        dist = temp1.nearest_dist           # 更新最近距离
        
        nodes_visited += temp1.nodes_visited  
 
        if dist < max_dist:     
            max_dist = dist    # 最近点将在以目标点为球心,max_dist为半径的超球体内
            
        temp_dist = abs(pivot[s] - target[s])    # 第s维上目标点与分割超平面的距离
        if  max_dist < temp_dist:                # 判断超球体是否与超平面相交
            return result(nearest, dist, nodes_visited) # 不相交则可以直接返回,不用继续判断
            
        #----------------------------------------------------------------------  
        # 计算目标点与分割点的欧氏距离  
        temp_dist = sqrt(sum((p1 - p2) ** 2 for p1, p2 in zip(pivot, target)))     
        
        if temp_dist < dist:         # 如果“更近”
            nearest = pivot          # 更新最近点
            dist = temp_dist         # 更新最近距离
            max_dist = dist          # 更新超球体半径
        
        # 检查另一个子结点对应的区域是否有更近的点
        temp2 = travel(further_node, target, max_dist) 
        
        nodes_visited += temp2.nodes_visited
        if temp2.nearest_dist < dist:        # 如果另一个子结点内存在更近距离
            nearest = temp2.nearest_point    # 更新最近点
            dist = temp2.nearest_dist        # 更新最近距离
 
        return result(nearest, dist, nodes_visited)
 
    return travel(tree.root, point, float("inf"))  # 从根节点开始递归

if __name__ == "__main__":
    data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]  # samples
    
    kd = KdTree(data)
    
    ret = find_nearest(kd, [3,4.5])
    print( ret)

 

KNN K-Nearest-Neighbor K最近邻居

标签:平面   需要   http   dimens   大于   选择   数据结构   lambda   lam   

原文地址:https://www.cnblogs.com/boyang987/p/14693678.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!