码迷,mamicode.com
首页 > 其他好文 > 详细

单例模式

时间:2021-05-03 12:37:27      阅读:0      评论:0      收藏:0      [点我收藏+]

标签:利用反射   默认   wrk   关于   判断   strong   输出   回顾   理解   

单例模式相信大家都有所听闻,甚至也写过不少了,在面试中也是考得最多的其中一个设计模式,面试官常常会要求写出两种类型的单例模式并且解释其原理,废话不多说,我们开始学习如何很好地回答这一道面试题吧。

什么是单例模式

面试官问什么是单例模式时,千万不要答非所问,给出单例模式有两种类型之类的回答,要围绕单例模式的定义去展开。

单例模式是指在内存中只会创建且仅创建一次对象的设计模式。在程序中多次使用同一个对象且作用相同时,为了防止频繁地创建对象使得内存飙升,单例模式可以让程序仅在内存中创建一个对象,让所有需要调用的地方都共享这一单例对象。

技术图片

单例模式的类型

单例模式有两种类型:

  1. 懒汉式:在真正需要使用对象时才去创建该单例类对象
  2. 饿汉式:在类加载时已经创建好该单例对象,等待被程序使用

懒汉式创建单例对象
懒汉式创建对象的方法是在程序使用对象前,先判断该对象是否已经实例化(判空),若已实例化直接返回该类对象。,否则则先执行实例化操作。

技术图片

根据上面的流程图,就可以写出下面的这段代码

public class Singleton {
    
    private static Singleton singleton;
    
    private Singleton(){}
    
    public static Singleton getInstance() {
        if (singleton == null) {
            singleton = new Singleton();
        }
        return singleton;
    }
    
}

没错,这里我们已经写出了一个很不错的单例模式,不过它不是完美的,但是这并不影响我们使用这个“单例对象”。

以上就是懒汉式创建单例对象的方法,我会在后面解释这段代码在哪里可以优化,存在什么问题。

饿汉式创建单例对象

饿汉式在类加载时已经创建好该对象,在程序调用时直接返回该单例对象即可,即我们在编码时就已经指明了要马上创建这个对象,不需要等到被调用时再去创建。

关于类加载,涉及到JVM的内容,我们目前可以简单认为在程序启动时,这个单例对象就已经创建好了。

技术图片

public class Singleton{
    
    private static final Singleton singleton = new Singleton();
    
    private Singleton(){}
    
    public static Singleton getInstance() {
        return singleton;
    }
}

注意上面的代码在第2行已经实例化好了一个Singleton对象在内存中,不会有多个Singleton对象实例存在

类在加载时会在堆内存中创建一个Singleton对象,当类被卸载时,Singleton对象也随之消亡了。

懒汉式如何保证只创建一个对象

我们再来回顾懒汉式的核心方法

public static Singleton getInstance() {
    if (singleton == null) {
        singleton = new Singleton();
    }
    return singleton;
}

这个方法其实是存在问题的,试想一下,如果两个线程同时判断singleton为空,那么它们都会去实例化一个Singleton对象,这就变成双例了。所以,我们要解决的是线程安全问题。

最容易想到的解决方法就是在方法上加锁,或者是对类对象加锁,程序就会变成下面这个样子

public static synchronized Singleton getInstance() {
    if (singleton == null) {
        singleton = new Singleton();
    }
    return singleton;
}
// 或者
public static Singleton getInstance() {
    synchronized(Singleton.class) {   
        if (singleton == null) {
            singleton = new Singleton();
        }
    }
    return singleton;
}

这样就规避了两个线程同时创建Singleton对象的风险,但是引来另外一个问题:每次去获取对象都需要先获取锁,并发性能非常地差,极端情况下,可能会出现卡顿现象。

接下来要做的就是优化性能,目标是:如果没有实例化对象则加锁创建,如果已经实例化了,则不需要加锁,直接获取实例

所以直接在方法上加锁的方式就被废掉了,因为这种方式无论如何都需要先获取锁

public static Singleton getInstance() {
    if (singleton == null) {  
        // 线程A和线程B同时看到singleton = null,如果不为null,则直接返回singleton
        synchronized(Singleton.class) { // 线程A或线程B获得该锁进行初始化
            if (singleton == null) { // 其中一个线程进入该分支,另外一个线程则不会进入该分支
                singleton = new Singleton();
            }
        }
    }
    return singleton;
}

上面的代码已经完美地解决了并发安全+性能低效问题:

第2行代码,如果singleton不为空,则直接返回对象,不需要获取锁;而如果多个线程发现singleton为空,则进入分支;

第3行代码,多个线程尝试争抢同一个锁,只有一个线程争抢成功,第一个获取到锁的线程会再次判断singleton是否为空,因为singleton有可能已经被之前的线程实例化,其它之后获取到锁的线程在执行到第4行校验代码,发现singleton已经不为空了,则不会再new一个对象,直接返回对象即可。之后所有进入该方法的线程都不会去获取锁,在第一次判断singleton对象时已经不为空了

因为需要两次判空,且对类对象加锁,该懒汉式写法也被称为:Double Check(双重校验) + Lock(加锁)

完整的代码如下所示:

public class Singleton {
    
    private static Singleton singleton;
    
    private Singleton(){}
    
    public static Singleton getInstance() {
        if (singleton == null) {  
            // 线程A和线程B同时看到singleton = null,如果不为null,则直接返回singleton
            synchronized(Singleton.class) { // 线程A或线程B获得该锁进行初始化
                if (singleton == null) { // 其中一个线程进入该分支,另外一个线程则不会进入该分支
                    singleton = new Singleton();
                }
            }
        }
        return singleton;
    }
    
}

上面这段代码已经近似完美了,但是还存在最后一个问题:指令重排(因为在底层源码中new singleton()并不是一条语句,所以可能会发生指令重排的问题)

使用volatile防止指令重排

创建一个对象,在JVM中会经过三步:

(1)为singleton分配内存空间

(2)初始化singleton对象

(3)将singleton指向分配好的内存空间

指令重排序是指:JVM在保证最终结果正确的情况下,可以不按照程序编码的顺序执行语句,尽可能提高程序的性能

在这三步中,第2、3步有可能会发生指令重排现象,创建对象的顺序变为1-3-2,会导致多个线程获取对象时,有可能线程A创建对象的过程中,执行了1、3步骤,线程B判断singleton已经不为空,获取到未初始化的singleton对象,就会报NPE异常。文字较为晦涩,可以看流程图:

技术图片

使用volatile关键字可以防止指令重排序,其原理较为复杂,这篇博客不打算展开,可以这样理解:使用volatile关键字修饰的变量,可以保证其指令执行的顺序与程序指明的顺序一致,不会发生顺序变换,这样在多线程环境下就不会发生NPE异常了。

volatile还有第二个作用:使用volatile关键字修饰的变量,可以保证其内存可见性,即每一时刻线程读取到该变量的值都是内存中最新的那个值,线程每次操作该变量都需要先读取该变量。

最终的代码如下所示:

public class Singleton {
	private static volatile Singleton singleton;

	private Singleton(){}

	public static Singleton getInstance() {
    	if (singleton == null) {  
            // 线程A和线程B同时看到singleton = null,如果不为null,则直接返回singleton
        	synchronized(Singleton.class) { // 线程A或线程B获得该锁进行初始化
          	  if (singleton == null) { // 其中一个线程进入该分支,另外一个线程则不会进入该分支
                singleton = new Singleton();
            }
        }
   	 }
    	return singleton;
	}
}

破坏懒汉式单例与饿汉式单例

无论是完美的懒汉式还是饿汉式,终究敌不过反射和序列化,它们俩都可以把单例对象破坏掉(产生多个对象)。

1:演示利用反射破坏单例模式

public static void main(String[] args) {
    // 获取类的显式构造器
    Constructor<Singleton> construct = Singleton.class.getDeclaredConstructor();
    // 可访问私有构造器
    construct.setAccessible(true); 
    // 利用反射构造新对象
    Singleton obj1 = construct.newInstance(); 
    // 通过正常方式获取单例对象
    Singleton obj2 = Singleton.getInstance(); 
    System.out.println(obj1 == obj2); // false
}

上述的代码一针见血了:利用反射,强制访问类的私有构造器,去创建另一个对象

2:利用序列化与反序列化破坏单例模式

这种方式需要单例类implements java.io.Serializable才行,否则会报错

    public static void main(String[] args) throws Exception {
        Singleton s1 = Singleton.getInstance();
        //通过反序列化的方式创建多个对象
        //先将对象写道D盘中
        FileOutputStream fos= new FileOutputStream("d:/a.txt");
        ObjectOutputStream oos = new ObjectOutputStream(fos);
        oos.writeObject(s1);
        oos.close();
        fos.close();
        //反序列化
        ObjectInputStream ois = new ObjectInputStream(new FileInputStream("d:/a.txt"));
        Singleton s2= (Singleton) ois.readObject();
        System.out.println("s1:"+s1.hashCode());
        System.out.println("反序列化创建的对象s5:"+s2.hashCode());
    }

两个对象地址不相等的原因是:readObject() 方法读入对象时,它必定会返回一个新的对象实例,必然指向新的内存地址。

如何防止破坏单例

对于反射破解单例

 private Singleton(){
        if (singleton != null) {
           throw new RuntimeException();
       }
    }

但是如果两次都是通过反射来创建对象(或第一次使用反射来创建),上面的判断还是没有用,依旧造成不是单例的现象

这时我们可以加标志位

private Singleton(){
        if(flag==false){
            flag=true;
        }else {
            throw new RuntimeException();
        }
    }

但其实这样还是不够安全,如果我知道了flag这个元素,每次创建对象后,重新把它设置为flase。这样就又不安全了。

对于序列化破解单例

在单例类中添加如下方法,成功防止序列化破坏单例模式,我们可以发现创建的hash码都相同(不加这个方法哈希码则不同,代表生成了两个对象)

    // 在反序列化时,直接调用这个方法,返回指定的对象,无需再新建一个对象
    //该方法定义好后,反序列化时会自动调用这个方法
    private Object readResolve() {
        return singleton;
    }

虽然上面的破解可以通过构造器和相关的流操作来保证单例的安全性,但是还是不是绝对的安全,因此建议使用枚举类来实现单例模式。

枚举实现单例模式

我们已经掌握了懒汉式与饿汉式的常见写法了,在《大话设计模式》中的单例模式章节也止步于此。但是,追求极致的我们,怎么能够止步于此,在《Effective Java》书中,给出了终极解决方法,话不多说,学完下面,真的不虚面试官考你了。

在 JDK1.5 后,使用 Java 语言实现单例模式的方式又多了一种:枚举

我们先来看看枚举如何实现单例模式的,如下代码:

public enum Singleton {
    INSTANCE;
    
    public void doSomething() {
        System.out.println("这是枚举类型的单例模式!");
    }

需要思考:使用枚举实现单例模式的优势在哪里?

我们从最直观的地方入手,第一眼看到这几行代码,就会感觉到“少”,没错,就是少,虽然这优势有些牵强,但写的代码越少,越不容易出错。

优势1:代码对比饿汉式与懒汉式来说,更加地简洁

其次,既然是实现单例模式,那这种写法必定满足单例模式的要求,而且使用枚举实现时,没有做任何额外的处理。

优势2:它不需要做任何额外的操作去保证对象单一性与线程安全性

我写了一段测试代码放在下面,这一段代码可以证明程序启动时仅会创建一个 Singleton 对象,且是线程安全的。

我们可以简单地理解枚举实现单例的过程:在程序启动时,会调用Singleton的空参构造器,实例化好一个Singleton对象赋给INSTANCE,之后再也不会实例化

public enum Singleton {
    INSTANCE;
    Singleton() { System.out.println("枚举创建对象了"); }
    public static void main(String[] args) { /* test(); */ }
    public void test() {
        Singleton t1 = Singleton.INSTANCE;
        Singleton t2 = Singleton.INSTANCE;
        System.out.print("t1和t2的地址是否相同:" + t1 == t2);
    }
}
// 枚举创建对象了
// t1和t2的地址是否相同:true

除了优势1和优势2,还有最后一个优势让枚举实现单例模式在目前看来已经是“无懈可击”了。

优势3:使用枚举可以防止调用者使用反射、序列化与反序列化机制强制生成多个单例对象,破坏单例模式。

防破坏的原理如下:

(1)防反射

技术图片

枚举类默认继承了 Enum 类,在利用反射调用 newInstance() 时,会判断该类是否是一个枚举类,如果是,则抛出异常。

(2)防止反序列化创建多个枚举对象

在读入Singleton对象时,每个枚举类型和枚举名字都是唯一的,所以在序列化时,仅仅只是对枚举的类型和变量名输出到文件中,在读入文件反序列化成对象时,利用 Enum 类的 valueOf(String name) 方法根据变量的名字查找对应的枚举对象。

所以,在序列化和反序列化的过程中,只是写出和读入了枚举类型和名字,没有任何关于对象的操作。

技术图片

小总结:

(1)Enum 类内部使用Enum 类型判定防止通过反射创建多个对象

(2)Enum 类通过写出(读入)对象类型和枚举名字将对象序列化(反序列化),通过 valueOf() 方法匹配枚举名找到内存中的唯一的对象实例,防止通过反序列化构造多个对象

(3)枚举类不需要关注线程安全、破坏单例和性能问题,因为其创建对象的时机与饿汉式单例有异曲同工之妙。

总结

(1)单例模式常见的写法有两种:懒汉式、饿汉式

(2)懒汉式:在需要用到对象时才实例化对象,正确的实现方式是:Double Check + Lock,解决了并发安全和性能低下问题

(3)饿汉式:在类加载时已经创建好该单例对象,在获取单例对象时直接返回对象即可,不会存在并发安全和性能问题。

(4)在开发中如果对内存要求非常高,那么使用懒汉式写法,可以在特定时候才创建该对象;

(5)如果对内存要求不高使用饿汉式写法,因为简单不易出错,且没有任何并发安全和性能问题

(6)为了防止多线程环境下,因为指令重排序导致变量报NPE,需要在单例对象上添加volatile关键字防止指令重排序

(7)最优雅的实现方式是使用枚举,其代码精简,没有线程安全问题,且 Enum 类内部防止反射和反序列化时破坏单例。

原文链接:https://blog.csdn.net/weixin_41949328/article/details/107296517

单例模式

标签:利用反射   默认   wrk   关于   判断   strong   输出   回顾   理解   

原文地址:https://www.cnblogs.com/lanxinren/p/14723953.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!