码迷,mamicode.com
首页 > 其他好文 > 详细

NLP 文本处理 工具

时间:2021-06-04 18:46:36      阅读:0      评论:0      收藏:0      [点我收藏+]

标签:rip   字符   cell   dom   img   代码   import   exce   文件   

 


1.中文语料常常遇到编码问题,将任意字符集文件转为utf-8编码

技术图片
 1 import chardet 
 2 import codecs
 3 from django.utils.encoding import smart_text
 4  
 5 def check_file_charset(file):                 #查看file文件的编码 
 6     with open(file, ‘rb‘) as f:
 7         return chardet.detect(f.read())
 8 
 9 def Convert_file_character(File_path):
10     f_type = check_file_charset(File_path)
11     print (File_path,"字符集为:",f_type[‘encoding‘])       
12     try:
13         if f_type and ‘encoding‘ in f_type.keys() and f_type[‘encoding‘] != ‘utf-8‘:
14             with codecs.open(File_path, ‘rb‘, f_type[‘encoding‘],errors=‘ignore‘) as f:
15                 content = smart_text(f.read())
16             with codecs.open(File_path, ‘wb‘, ‘utf-8‘) as f:
17                 f.write(content)
18             print ("字符集转换成功")
19         else:
20             print("字符集为 utf-8,不需要进行转换")
21     except Exception as ERR:
22         print("字符集转换失败")
23         print (ERR)
24 
25 corpus_path = ‘./unlabel‘
26 raw_train_files = [corpus_path + os.sep + file_name for file_name in os.listdir(corpus_path)]
27 for raw_train_file in raw_train_files:
28     Convert_file_character(raw_train_file)
技术图片

参考:https://blog.csdn.net/qq_35751770/article/details/103664496

2.将unlabel文件夹中的所有.txt文件合并,每个文件之间空一行 

先调用上面的代码转换编码

技术图片
 1 def combine(corpus_path, outpath):
 2     output = open(outpath, ‘a‘, encoding=‘utf-8‘)
 3     
 4     raw_train_files = [corpus_path + os.sep + file_name for file_name in os.listdir(corpus_path)]
 5     for raw_train_file in raw_train_files:
 6         
 7         f_type = check_file_charset(raw_train_file)                    #查看文件的编码 
 8         print (raw_train_file,"字符集为:",f_type[‘encoding‘])
 9         with open(raw_train_file, ‘r+‘, encoding=‘utf-8‘) as f:
10             context = f.readlines()
11     
12         for x in context:
13             output.write(x)
14         output.write(‘\n‘)
15 
16 combine(‘./unlabel‘, ‘all_unlabel.txt‘)
技术图片

3.随机抽取.txt文件中的60%,20%,5%

技术图片
 1 def part(filename, outpath, ratio): 
 2     output = open(outpath, ‘w+‘, encoding=‘utf-8‘)
 3     context = []
 4     with open(filename, ‘r+‘, encoding=‘utf-8‘) as f:
 5         context.extend(f.readlines())
 6     
 7     length = len(context)
 8     random_order = list(range(length))
 9     np.random.shuffle(random_order)
10     
11     batch_size = int(length*ratio)
12     print(batch_size)
13     for x in context[:batch_size]:
14         output.write(x)
15         
16 ratio1, ratio2, ratio3 = 0.6, 0.2, 0.05
17 part(‘training/law_train.txt‘, ‘training/law_train1.txt‘, ratio1)    
18 part(‘training/law_train.txt‘, ‘training/law_train2.txt‘, ratio2)           
19 part(‘training/law_train.txt‘, ‘training/law_train3.txt‘, ratio3) 
技术图片

4.将已经分好词的文件去掉空格(正则),恢复成文件原来的样子

技术图片
 1 def deal_data(filename, outpath): 
 2     output = open(outpath, ‘w+‘, encoding=‘utf-8‘)
 3     
 4     with open(filename, ‘r+‘, encoding=‘utf-8‘) as f:
 5         context = f.readlines()
 6         for data in context:                 #data为某一行数据             
 7             x = re.sub(‘\s+‘, ‘‘, data).strip()
 8             output.write(x)
 9             
10 
11 deal_data(‘evaluate/law/Law_contract_test.txt‘, ‘evaluate/gold/Law_contract_test.txt‘)
12 deal_data(‘evaluate/law/Law_marriage_test.txt‘, ‘evaluate/gold/Law_marriage_test.txt‘)            
13 deal_data(‘evaluate/law/Law_mixed_test.txt‘, ‘evaluate/gold/Law_mixed_test.txt‘)
技术图片

5.读取excel文件转换成.json文件

技术图片
 1 #coding=utf-8
 2 import xlrd        #对excel文件内容读取
 3 import xlwt        #对excel文件内容写入 
 4 import json
 5 """
 6 打开excel文件 处理成json文件 {text:,label:}
 7 data.xls变成train.json、val.json、test.json
 8 """
 9 
10 def deal_data(filename,outpath):              #filename为xlsx文件路径 outputfile为json文件路径
11     wb = xlrd.open_workbook(filename)         #打开excel文件读取数据 
12     data_file=["train","test","val"]
13 
14     for excel_name in data_file:
15         output_file = outpath + excel_name+".json"              #命名处理之后的json文件名 
16         output = open(output_file, "w", encoding="utf-8")       #写入 
17 
18         excel = wb.sheet_by_name(excel_name)    #根据sheet名称获取sheet内容
19         rows_n = excel.nrows                    #同时获取sheet总行数
20         for i in range(rows_n):                                 #分别获取每行的第0、1、2列 
21             data_dic = {}
22             data_dic["filepath"] = excel.cell_value(i , 0)            
23             data_dic["text"] = excel.cell_value(i , 1).strip()
24             data_dic["label"] = tuple(excel.cell_value(i , 2).split())
25 
26             output.write(json.dumps(data_dic) + "\n")           #写入json文件 
27         output.close()
28 
29 deal_data("data01.xls","corpus/class/origin_corpus/")
技术图片

 

NLP 文本处理 工具

标签:rip   字符   cell   dom   img   代码   import   exce   文件   

原文地址:https://www.cnblogs.com/wszme/p/14846058.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
分享档案
周排行
mamicode.com排行更多图片
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!