标签:输出 破坏 更新 ati 分组背包 $$ 预算 ace 附件
一个二维01背包的板子,状态转移方程$$Dp_{j,k}=max\left \{Dp_{j,k},Dp_{j-Weight_i,k-V_i}+Value_i\right \}$$
大概类似于分组背包,开$long\ long$,在更新$Dp$的过程中记录路径,递归输出即可。同时可能会有$Dp$数组有重复的地方,需要当$Dp_{n,P}=Dp_{n,P-1}$时,令$P-1$即可,最后$Print(n,P)$状态转移方程:$$Dp_{i,j}=max\left \{Dp_{i,k},Dp_{i-1,j-k\times p_i.c}+p_i.w_k\right \}$$
inline void Print(int k , int Left) { if(k == 0) return; _Print(k - 1 , Left - Number[k][Left] * p[k].c); Write(num[k][Left]) , Enter; } inline void _Print(int k) { for(int i = 1; i <= m; i++) Write(Dp[k][i]) , Space; Enter; }
类似于01背包,注意要二进制优化,数组要开大,状态转移方程$$Dp_j=max\left \{Dp_j,Dp_{j-Weight_i}+Value_i\right \}$$
无他,惟挨个er特判是否为主件附件耳,状态转移方程$$Dp_j=max\left \{Dp_j,Dp_{j-Weight_i}+Value_i\right \}\\Dp_j=max\left \{Dp_j,Dp_{j-\underline{ }Weight_{i,1}}+Value_i+\underline{ }Value_{i,1}\right \}\\Dp_j=max\left \{Dp_j,Dp_{j-\underline{ }Weight_{i,2}}+Value_i+\underline{ }Value_{i,2}\right \}\\Dp_j=max\left \{Dp_j,Dp_{j-\underline{ }Weight_{i,1}-\underline{ }Weight_{i,2}}+Value_i+\underline{ }Value_{i,1}+\underline{ }Value_{i,2}\right \}$$
标签:输出 破坏 更新 ati 分组背包 $$ 预算 ace 附件
原文地址:https://www.cnblogs.com/Tenderfoot/p/14872512.html