标签:png nal spl ons validate sig 函数式 csv 权重
titanic数据集的目标是根据乘客信息预测他们在Titanic号撞击冰山沉没后能否生存。
结构化数据一般会使用Pandas中的DataFrame进行预处理。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import models,layers
dftrain_raw = pd.read_csv(‘./data/titanic/train.csv‘)
dftest_raw = pd.read_csv(‘./data/titanic/test.csv‘)
dftrain_raw.head(10)
字段说明:
利用Pandas的数据可视化功能我们可以简单地进行探索性数据分析EDA(Exploratory Data Analysis)。
label分布情况
%matplotlib inline
%config InlineBackend.figure_format = ‘png‘
ax = dftrain_raw[‘Survived‘].value_counts().plot(kind = ‘bar‘,
figsize = (12,8),fontsize=15,rot = 0)
ax.set_ylabel(‘Counts‘,fontsize = 15)
ax.set_xlabel(‘Survived‘,fontsize = 15)
plt.show()
年龄分布情况
%matplotlib inline
%config InlineBackend.figure_format = ‘png‘
ax = dftrain_raw[‘Age‘].plot(kind = ‘hist‘,bins = 20,color= ‘purple‘,
figsize = (12,8),fontsize=15)
ax.set_ylabel(‘Frequency‘,fontsize = 15)
ax.set_xlabel(‘Age‘,fontsize = 15)
plt.show()
年龄和label的相关性
%matplotlib inline
%config InlineBackend.figure_format = ‘png‘
ax = dftrain_raw.query(‘Survived == 0‘)[‘Age‘].plot(kind = ‘density‘,
figsize = (12,8),fontsize=15)
dftrain_raw.query(‘Survived == 1‘)[‘Age‘].plot(kind = ‘density‘,
figsize = (12,8),fontsize=15)
ax.legend([‘Survived==0‘,‘Survived==1‘],fontsize = 12)
ax.set_ylabel(‘Density‘,fontsize = 15)
ax.set_xlabel(‘Age‘,fontsize = 15)
plt.show()
下面为正式的数据预处理
def preprocessing(dfdata):
dfresult= pd.DataFrame()
#Pclass
dfPclass = pd.get_dummies(dfdata[‘Pclass‘])
dfPclass.columns = [‘Pclass_‘ +str(x) for x in dfPclass.columns ]
dfresult = pd.concat([dfresult,dfPclass],axis = 1)
#Sex
dfSex = pd.get_dummies(dfdata[‘Sex‘])
dfresult = pd.concat([dfresult,dfSex],axis = 1)
#Age
dfresult[‘Age‘] = dfdata[‘Age‘].fillna(0)
dfresult[‘Age_null‘] = pd.isna(dfdata[‘Age‘]).astype(‘int32‘)
#SibSp,Parch,Fare
dfresult[‘SibSp‘] = dfdata[‘SibSp‘]
dfresult[‘Parch‘] = dfdata[‘Parch‘]
dfresult[‘Fare‘] = dfdata[‘Fare‘]
#Carbin
dfresult[‘Cabin_null‘] = pd.isna(dfdata[‘Cabin‘]).astype(‘int32‘)
#Embarked
dfEmbarked = pd.get_dummies(dfdata[‘Embarked‘],dummy_na=True)
dfEmbarked.columns = [‘Embarked_‘ + str(x) for x in dfEmbarked.columns]
dfresult = pd.concat([dfresult,dfEmbarked],axis = 1)
return(dfresult)
x_train = preprocessing(dftrain_raw)
y_train = dftrain_raw[‘Survived‘].values
x_test = preprocessing(dftest_raw)
y_test = dftest_raw[‘Survived‘].values
print("x_train.shape =", x_train.shape )
print("x_test.shape =", x_test.shape )
x_train.shape = (712, 15)
x_test.shape = (179, 15)
使用Keras接口有以下3种方式构建模型:使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型,继承Model基类构建自定义模型。
此处选择使用最简单的Sequential,按层顺序模型。
tf.keras.backend.clear_session()
model = models.Sequential()
model.add(layers.Dense(20,activation = ‘relu‘,input_shape=(15,)))
model.add(layers.Dense(10,activation = ‘relu‘ ))
model.add(layers.Dense(1,activation = ‘sigmoid‘ ))
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 20) 320
_________________________________________________________________
dense_1 (Dense) (None, 10) 210
_________________________________________________________________
dense_2 (Dense) (None, 1) 11
=================================================================
Total params: 541
Trainable params: 541
Non-trainable params: 0
_________________________________________________________________
训练模型通常有3种方法,内置fit方法,内置train_on_batch方法,以及自定义训练循环。此处我们选择最常用也最简单的内置fit方法。
# 二分类问题选择二元交叉熵损失函数
model.compile(optimizer=‘adam‘,
loss=‘binary_crossentropy‘,
metrics=[‘AUC‘])
history = model.fit(x_train,y_train,
batch_size= 64,
epochs= 30,
validation_split=0.2 #分割一部分训练数据用于验证
)
Train on 569 samples, validate on 143 samples
Epoch 1/30
569/569 [==============================] - 1s 2ms/sample - loss: 3.5841 - AUC: 0.4079 - val_loss: 3.4429 - val_AUC: 0.4129
Epoch 2/30
569/569 [==============================] - 0s 102us/sample - loss: 2.6093 - AUC: 0.3967 - val_loss: 2.4886 - val_AUC: 0.4139
Epoch 3/30
569/569 [==============================] - 0s 68us/sample - loss: 1.8375 - AUC: 0.4003 - val_loss: 1.7383 - val_AUC: 0.4223
Epoch 4/30
569/569 [==============================] - 0s 83us/sample - loss: 1.2545 - AUC: 0.4390 - val_loss: 1.1936 - val_AUC: 0.4765
Epoch 5/30
569/569 [==============================] - ETA: 0s - loss: 1.4435 - AUC: 0.375 - 0s 90us/sample - loss: 0.9141 - AUC: 0.5192 - val_loss: 0.8274 - val_AUC: 0.5584
Epoch 6/30
569/569 [==============================] - 0s 110us/sample - loss: 0.7052 - AUC: 0.6290 - val_loss: 0.6596 - val_AUC: 0.6880
Epoch 7/30
569/569 [==============================] - 0s 90us/sample - loss: 0.6410 - AUC: 0.7086 - val_loss: 0.6519 - val_AUC: 0.6845
Epoch 8/30
569/569 [==============================] - 0s 93us/sample - loss: 0.6246 - AUC: 0.7080 - val_loss: 0.6480 - val_AUC: 0.6846
Epoch 9/30
569/569 [==============================] - 0s 73us/sample - loss: 0.6088 - AUC: 0.7113 - val_loss: 0.6497 - val_AUC: 0.6838
Epoch 10/30
569/569 [==============================] - 0s 79us/sample - loss: 0.6051 - AUC: 0.7117 - val_loss: 0.6454 - val_AUC: 0.6873
Epoch 11/30
569/569 [==============================] - 0s 96us/sample - loss: 0.5972 - AUC: 0.7218 - val_loss: 0.6369 - val_AUC: 0.6888
Epoch 12/30
569/569 [==============================] - 0s 92us/sample - loss: 0.5918 - AUC: 0.7294 - val_loss: 0.6330 - val_AUC: 0.6908
Epoch 13/30
569/569 [==============================] - 0s 75us/sample - loss: 0.5864 - AUC: 0.7363 - val_loss: 0.6281 - val_AUC: 0.6948
Epoch 14/30
569/569 [==============================] - 0s 104us/sample - loss: 0.5832 - AUC: 0.7426 - val_loss: 0.6240 - val_AUC: 0.7030
Epoch 15/30
569/569 [==============================] - 0s 74us/sample - loss: 0.5777 - AUC: 0.7507 - val_loss: 0.6200 - val_AUC: 0.7066
Epoch 16/30
569/569 [==============================] - 0s 79us/sample - loss: 0.5726 - AUC: 0.7569 - val_loss: 0.6155 - val_AUC: 0.7132
Epoch 17/30
569/569 [==============================] - 0s 99us/sample - loss: 0.5674 - AUC: 0.7643 - val_loss: 0.6070 - val_AUC: 0.7255
Epoch 18/30
569/569 [==============================] - 0s 97us/sample - loss: 0.5631 - AUC: 0.7721 - val_loss: 0.6061 - val_AUC: 0.7305
Epoch 19/30
569/569 [==============================] - 0s 73us/sample - loss: 0.5580 - AUC: 0.7792 - val_loss: 0.6027 - val_AUC: 0.7332
Epoch 20/30
569/569 [==============================] - 0s 85us/sample - loss: 0.5533 - AUC: 0.7861 - val_loss: 0.5997 - val_AUC: 0.7366
Epoch 21/30
569/569 [==============================] - 0s 87us/sample - loss: 0.5497 - AUC: 0.7926 - val_loss: 0.5961 - val_AUC: 0.7433
Epoch 22/30
569/569 [==============================] - 0s 101us/sample - loss: 0.5454 - AUC: 0.7987 - val_loss: 0.5943 - val_AUC: 0.7438
Epoch 23/30
569/569 [==============================] - 0s 100us/sample - loss: 0.5398 - AUC: 0.8057 - val_loss: 0.5926 - val_AUC: 0.7492
Epoch 24/30
569/569 [==============================] - 0s 79us/sample - loss: 0.5328 - AUC: 0.8122 - val_loss: 0.5912 - val_AUC: 0.7493
Epoch 25/30
569/569 [==============================] - 0s 86us/sample - loss: 0.5283 - AUC: 0.8147 - val_loss: 0.5902 - val_AUC: 0.7509
Epoch 26/30
569/569 [==============================] - 0s 67us/sample - loss: 0.5246 - AUC: 0.8196 - val_loss: 0.5845 - val_AUC: 0.7552
Epoch 27/30
569/569 [==============================] - 0s 72us/sample - loss: 0.5205 - AUC: 0.8271 - val_loss: 0.5837 - val_AUC: 0.7584
Epoch 28/30
569/569 [==============================] - 0s 74us/sample - loss: 0.5144 - AUC: 0.8302 - val_loss: 0.5848 - val_AUC: 0.7561
Epoch 29/30
569/569 [==============================] - 0s 77us/sample - loss: 0.5099 - AUC: 0.8326 - val_loss: 0.5809 - val_AUC: 0.7583
Epoch 30/30
569/569 [==============================] - 0s 80us/sample - loss: 0.5071 - AUC: 0.8349 - val_loss: 0.5816 - val_AUC: 0.7605
我们首先评估一下模型在训练集和验证集上的效果。
%matplotlib inline
%config InlineBackend.figure_format = ‘svg‘
import matplotlib.pyplot as plt
def plot_metric(history, metric):
train_metrics = history.history[metric]
val_metrics = history.history[‘val_‘+metric]
epochs = range(1, len(train_metrics) + 1)
plt.plot(epochs, train_metrics, ‘bo--‘)
plt.plot(epochs, val_metrics, ‘ro-‘)
plt.title(‘Training and validation ‘+ metric)
plt.xlabel("Epochs")
plt.ylabel(metric)
plt.legend(["train_"+metric, ‘val_‘+metric])
plt.show()
plot_metric(history,"loss")
plot_metric(history,"AUC")
我们再看一下模型在测试集上的效果.
model.evaluate(x = x_test,y = y_test)
[0.5191367897907448, 0.8122605]
#预测概率
model.predict(x_test[0:10])
#model(tf.constant(x_test[0:10].values,dtype = tf.float32)) #等价写法
array([[0.26501188],
[0.40970832],
[0.44285864],
[0.78408605],
[0.47650957],
[0.43849158],
[0.27426785],
[0.5962582 ],
[0.59476686],
[0.17882936]], dtype=float32)
#预测类别
model.predict_classes(x_test[0:10])
array([[0],
[0],
[0],
[1],
[0],
[0],
[0],
[1],
[1],
[0]], dtype=int32)
可以使用Keras方式保存模型,也可以使用TensorFlow原生方式保存。前者仅仅适合使用Python环境恢复模型,后者则可以跨平台进行模型部署。
推荐使用后一种方式进行保存。
1,Keras方式保存
# 保存模型结构及权重
model.save(‘./data/keras_model.h5‘)
del model #删除现有模型
# identical to the previous one
model = models.load_model(‘./data/keras_model.h5‘)
model.evaluate(x_test,y_test)
[0.5191367897907448, 0.8122605]
# 保存模型结构
json_str = model.to_json()
# 恢复模型结构
model_json = models.model_from_json(json_str)
#保存模型权重
model.save_weights(‘./data/keras_model_weight.h5‘)
# 恢复模型结构
model_json = models.model_from_json(json_str)
model_json.compile(
optimizer=‘adam‘,
loss=‘binary_crossentropy‘,
metrics=[‘AUC‘]
)
# 加载权重
model_json.load_weights(‘./data/keras_model_weight.h5‘)
model_json.evaluate(x_test,y_test)
[0.5191367897907448, 0.8122605]
2,TensorFlow原生方式保存
# 保存权重,该方式仅仅保存权重张量
model.save_weights(‘./data/tf_model_weights.ckpt‘,save_format = "tf")
# 保存模型结构与模型参数到文件,该方式保存的模型具有跨平台性便于部署
model.save(‘./data/tf_model_savedmodel‘, save_format="tf")
print(‘export saved model.‘)
model_loaded = tf.keras.models.load_model(‘./data/tf_model_savedmodel‘)
model_loaded.evaluate(x_test,y_test)
[0.5191365896656527, 0.8122605]
标签:png nal spl ons validate sig 函数式 csv 权重
原文地址:https://www.cnblogs.com/Carrawayang/p/14877088.html