码迷,mamicode.com
首页 > 其他好文 > 详细

性能监控工具之Grafana+Prometheus+Exporters

时间:2021-06-13 10:03:29      阅读:0      评论:0      收藏:0      [点我收藏+]

标签:call   system   set   listen   tin   oid   creat   enable   avg   

在本模块中,我将把几个常用的监控部分给梳理一下。前面我们提到过,在性能监控图谱中,有操作系统、应用服务器、中间件、队列、缓存、数据库、网络、前端、负载均衡、Web 服务器、存储、代码等很多需要监控的点。显然这些监控点不能在一个专栏中全部覆盖并一一细化,我只能找最常用的几个,做些逻辑思路的说明,同时也把具体的实现描述出来。如果你遇到了其他的组件,也需要一一实现这些监控。

在本篇中,主要想说明白下图的这个监控逻辑。

 

技术图片

 

 

这应该是现在最流行的一套监控逻辑了吧。我今天把常见的使用 Grafana、Prometheus、InfluxDB、Exporters 的数据展示方式说一下,如果你刚进入性能测试领域,也能有一个感性的认识。

有测试工具,有监控工具,才能做后续的性能分析和瓶颈定位,所以有必要把这些工具的逻辑跟你摆一摆。

所有做性能的人都应该知道一点,不管数据以什么样的形式展示,最要紧的还是看数据的来源和含义,以便做出正确的判断。

我先说明一下 JMeter 和 node_exporter 到 Grafana 的数据展示逻辑。至于其他的 Exporter,我就不再解释这个逻辑了,只说监控分析的部分。

JMeter+InfluxDB+Grafana 的数据展示逻辑

一般情况下,我们用 JMeter 做压力测试时,都是使用 JMeter 的控制台来查看结果。如下图所示:

技术图片

 

 

或者装个插件来看结果:

技术图片

 

 或者用 JMeter 来生成 HTML:

技术图片

 

 

这样看都没有问题,我们在前面也强调过,对于压力工具来说,我们最多只关心三条曲线的数据:TPS(T 由测试目标定义)、响应时间、错误率。这里的错误率还只是辅助排查问题的曲线,没有问题时,只看 TPS 和响应时间即可。

不过采取以上三种方式有几个方面的问题。

  1. 整理结果时比较浪费时间。
  2. 在 GUI 用插件看曲线,做高并发时并不现实。
  3. 在场景运行时间比较长的时候,采用生成 HTML 的方式,会出现消耗内存过大的情况,而实际上,在生成的结果图中,有很多生成的图我们并不是那么关注。
  4. 生成的结果保存之后再查看比较麻烦,还要一个个去找。

那么如何解决这几个问题呢?

用 JMeter 的 Backend Listener 帮我们实时发送数据到 InfluxDB 或 Graphite 可以解决这样的问题。

Graphite Backend Listener 的支持是在 JMeter 2.13 版本,InfluxdDB Backend Listener 的支持是在 JMeter 3.3 的版本,它们都是用异步的方式把数据发送出来,以便查看。

其实有这个 JMeter 发送给 InfluxDB 的数据之后,我们不需要看上面的那些 HTML 数据,也可以直观地看到系统性能的性能趋势。

并且这样保存下来的数据,在测试结束后想再次查看也比较方便比对。

JMeter+InfluxDB+Grafana 的结构如下:

技术图片

 

 在这个结构中,JMeter 发送压力到服务器的同时,统计下 TPS、响应时间、线程数、错误率等信息。默认每 30 秒在控制台输出一次结果(在 jmeter.properties 中有一个参数 #summariser.interval=30 可以控制)。

配置了 Backend Listener 之后,将统计出的结果异步发送到 InfluxDB 中。最后在 Grafana 中配置 InfluxDB 数据源和 JMeter 显示模板。

然后就可以实时查看 JMeter 的测试结果了,这里看到的数据和控制台的数据是一样。

但如果这么简单就说完了,这篇文章也就没价值了。下面我们来说一下,数据的传输和展示逻辑。

JMeter 中 Backend Listener 的配置

下面我们就 InfluxDB 的 Backend Listener 做个说明。它的配置比较简单,在脚本中加上即可。

技术图片

 

 我们先配置好 influxdb Url、application 等信息,application 这个配置可以看成是场景名。

那么 JMeter 如何将数据发给 InfluxDB 呢?请看源码中的关键代码,如下所示:

    private void addMetrics(String transaction, SamplerMetric metric) {
        // FOR ALL STATUS
        addMetric(transaction, metric.getTotal(), metric.getSentBytes(), metric.getReceivedBytes(), TAG_ALL, metric.getAllMean(), metric.getAllMinTime(),
                metric.getAllMaxTime(), allPercentiles.values(), metric::getAllPercentile);
        // FOR OK STATUS
        addMetric(transaction, metric.getSuccesses(), null, null, TAG_OK, metric.getOkMean(), metric.getOkMinTime(),
                metric.getOkMaxTime(), okPercentiles.values(), metric::getOkPercentile);
        // FOR KO STATUS
        addMetric(transaction, metric.getFailures(), null, null, TAG_KO, metric.getKoMean(), metric.getKoMinTime(),
                metric.getKoMaxTime(), koPercentiles.values(), metric::getKoPercentile);
?
?
        metric.getErrors().forEach((error, count) -> addErrorMetric(transaction, error.getResponseCode(),
                    error.getResponseMessage(), count));
    }

从这段代码可以看出,站在全局统计的视角来看,这里把 JMeter 运行的统计结果,比如事务的 Total 请求、发送接收字节、平均值、最大值、最小值等,都加到 metric 中,同时也会把成功和失败的事务信息添加到 metric 中去。

在源码中,还有更多的添加 metric 的步骤,你有兴趣的话,也可以看一下 JMeter 源码中的InfluxdbBackendListenerClient.java。

保存了 metric 之后,再使用 InfluxdbMetricsSender 发送到 Influxdb 中去。发送关键代码如下:

   @Override
    public void writeAndSendMetrics() {
 ........
        if (!copyMetrics.isEmpty()) {
            try {
                if(httpRequest == null) {
                    httpRequest = createRequest(url);
                }
                StringBuilder sb = new StringBuilder(copyMetrics.size()*35);
                for (MetricTuple metric : copyMetrics) {
                    // Add TimeStamp in nanosecond from epoch ( default in InfluxDB )
                    sb.append(metric.measurement)
                        .append(metric.tag)
                        .append(" ") //$NON-NLS-1$
                        .append(metric.field)
                        .append(" ")
                        .append(metric.timestamp+"000000") 
                        .append("\n"); //$NON-NLS-1$
                }


                StringEntity entity = new StringEntity(sb.toString(), StandardCharsets.UTF_8);
                
                httpRequest.setEntity(entity);
                lastRequest = httpClient.execute(httpRequest, new FutureCallback<HttpResponse>() {
                    @Override
                    public void completed(final HttpResponse response) {
                        int code = response.getStatusLine().getStatusCode();
                        /*
                         * HTTP response summary 2xx: If your write request received
                         * HTTP 204 No Content, it was a success! 4xx: InfluxDB
                         * could not understand the request. 5xx: The system is
                         * overloaded or significantly impaired.
                         */
                        if (MetricUtils.isSuccessCode(code)) {
                            if(log.isDebugEnabled()) {
                                log.debug("Success, number of metrics written: {}", copyMetrics.size());
                            } 
                        } else {
                            log.error("Error writing metrics to influxDB Url: {}, responseCode: {}, responseBody: {}", url, code, getBody(response));
                        }
                    }
                    @Override
                    public void failed(final Exception ex) {
                        log.error("failed to send data to influxDB server : {}", ex.getMessage());
                    }
                    @Override
                    public void cancelled() {
                        log.warn("Request to influxDB server was cancelled");
                    }
                });               
 ........
            }
        }
    }

通过 writeAndSendMetrics,就将所有保存的 metrics 都发给了 InfluxDB。

InfluxDB 中的存储结构

然后我们再来看下 InfluxDB 中如何存储:


> show databases
name: databases
name
----
_internal
jmeter
> use jmeter
Using database jmeter
>
> show MEASUREMENTS
name: measurements
name
----
events
jmeter
> select * from events where application=‘7ddemo‘
name: events
time application text title
---- ----------- ---- -----
1575255462806000000 7ddemo Test Cycle1 started ApacheJMeter
1575256463820000000 7ddemo Test Cycle1 ended ApacheJMeter
..............
n> select * from jmeter where application=‘7ddemo‘ limit 10
name: jmeter
time application avg count countError endedT hit max maxAT meanAT min minAT pct90.0 pct95.0 pct99.0 rb responseCode responseMessage sb startedT statut transaction
---- ----------- --- ----- ---------- ------ --- --- ----- ------ --- ----- ------- ------- ------- -- ------------ --------------- -- -------- ------ -----------
1575255462821000000 7ddemo 0 0 0 0 0 internal
1575255467818000000 7ddemo 232.82352941176472 17 0 17 849 122 384.9999999999996 849 849 0 0 all all
1575255467824000000 7ddemo 232.82352941176472 17 849 122 384.9999999999996 849 849 0 0 all 0_openIndexPage
1575255467826000000 7ddemo 232.82352941176472 17 849 122 384.9999999999996 849 849 ok 0_openIndexPage
1575255467829000000 7ddemo 0 1 1 1 1 internal
1575255472811000000 7ddemo 205.4418604651163 26 0 26 849 122 252.6 271.4 849 0 0 all all
1575255472812000000 7ddemo 0 1 1 1 1 internal
1575255472812000000 7ddemo 205.4418604651163 26 849 122 252.6 271.4 849 ok 0_openIndexPage
1575255472812000000 7ddemo 205.4418604651163 26 849 122 252.6 271.4 849 0 0 all 0_openIndexPage
1575255477811000000 7ddemo 198.2142857142857 27 0 27 849 117 263.79999999999995 292.3500000000001 849 0 0 all all

这段代码也就是说,在 InfluxDB 中,创建了两个 MEASUREMENTS,分别是 events 和 jmeter。这两个各自存了数据,我们在界面中配置的 testtile 和 eventTags 放在了 events 这个 MEASUREMENTS 中。在模板中这两个值暂时都是不用的。

在 jmeter 这个 MEASUREMENTS 中,我们可以看到 application 和事务的统计信息,这些值和控制台一致。在 Grafana 中显示的时候,就是从这个表中取出的数据,根据时序做的曲线。

性能监控工具之Grafana+Prometheus+Exporters

标签:call   system   set   listen   tin   oid   creat   enable   avg   

原文地址:https://www.cnblogs.com/siguadd/p/14878035.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!