码迷,mamicode.com
首页 > 其他好文 > 详细

树套树总结

时间:2021-06-13 10:21:17      阅读:0      评论:0      收藏:0      [点我收藏+]

标签:int   查询   +=   树状   tchar   amp   get   nod   前缀和   

最近做题发现自己并不知道什么时候该用树套树,就来总结一下

一、静态整体kth

排序输出

	sort(a+1,a+n+1);
	printf("%d\n",a[k]); 

时间复杂度O(nlogn) 空间复杂度O(n)

二、动态整体kth

权值线段树+二分

查询时先查询左子树和sum,比较k和sum的大小:若k<=sum则说明第k小数在左子树中,递归查询左子树;

否则,这个数对应的就是右子树中第k-sum小的数,k-=sum,递归查询右子树。

时间复杂度O(nlogn) 空间复杂度O(n)

应该是这么写的吧……甚至离散化刚开始都写错了

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
int read(){
	int x = 1,a = 0;char ch = getchar();
	while (ch < ‘0‘||ch > ‘9‘){if (ch == ‘-‘) x = -1;ch = getchar();}
	while (ch >= ‘0‘&&ch <= ‘9‘){a = a*10+ch-‘0‘;ch = getchar();}
	return x*a;
}
const int maxn = 1e5+10;
int sum[maxn << 1];
int ls(int x){return x << 1;}
int rs(int x){return x << 1 | 1;} 
void modify(int x,int l,int r,int p,int k){
	sum[x] += k;
	if (l == r) return;
	int mid = (l+r >> 1);
	if (p <= mid) modify(ls(x),l,mid,p,k);
	else modify(rs(x),mid+1,r,p,k);
} 
int query(int x,int l,int r,int k){
//	cout<<l<<" "<<r<<" "<<sum[ls(x)]<<" "<<k<<endl;
	int mid = (l+r >> 1);
	if (l == r) return l;
	if (sum[ls(x)] >= k) return query(ls(x),l,mid,k);
	else return query(rs(x),mid+1,r,k-sum[ls(x)]);
}
int n,m;
int a[maxn],b[maxn];
int main(){
	n = read(),m = read();
	for (int i = 1;i <= n;i++) a[i] = b[i] = read();
	sort(b+1,b+n+1);
	int len = unique(b+1,b+n+1)-b-1;
	for (int i = 1;i <= n;i++) a[i] = lower_bound(b+1,b+len+1,a[i])-b;
	for (int i = 1;i <= n;i++) modify(1,1,len,a[i],1);
	for (int i = 1;i <= m;i++){
		int op = read(); 
		if (op == 0){
			int x = read(),k = read();
			modify(1,1,len,a[x],-1);
			a[x] = k;
			modify(1,1,len,a[x],1);
		}
		if (op == 1){
			int k = read();
			printf("%d\n",b[query(1,1,len,k)]);
		}
	}
	return 0;
}

三、静态区间kth

对每个点以其前缀开一棵权值线段树,那么任意一段区间均可以表示成为两棵权值线段树作差,即R位置的线段树减去L-1位置上的线段树

每个点开一棵线段树空间复杂度\(O(n^2)\),MLE,考虑到后一个位置相比于前一个位置的更改只有logn个节点,所以使用主席树

时间复杂度O(nlogn) 空间复杂度O(nlogn)

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
int read(){
	int x = 1,a = 0;char ch = getchar();
	while (ch < ‘0‘||ch > ‘9‘){if (ch == ‘-‘) x = -1;ch = getchar();}
	while (ch >= ‘0‘&&ch <= ‘9‘){a = a*10+ch-‘0‘;ch = getchar();}
	return x*a;
}
const int maxn = 1e5+10;
int sum[maxn << 1];
int tot,root[maxn];
struct node{
	int ls,rs,val;
}tree[maxn*30];
void modify(int &now,int lst,int l,int r,int p,int k){
	if (!now) now = ++tot;
	tree[now].val = tree[lst].val + k;
	if (l == r) return;
	int mid = (l+r >> 1);
	if (p <= mid) tree[now].rs = tree[lst].rs,modify(tree[now].ls,tree[lst].ls,l,mid,p,k);
	else tree[now].ls = tree[lst].ls,modify(tree[now].rs,tree[lst].rs,mid+1,r,p,k); 
} 
int query(int now,int lst,int l,int r,int k){
	if (!now) return 0;
	int mid = (l+r >> 1);
	if (l == r) return l;
	int res = tree[tree[now].ls].val-tree[tree[lst].ls].val;	
	if (res >= k) return query(tree[now].ls,tree[lst].ls,l,mid,k);
	else return query(tree[now].rs,tree[lst].rs,mid+1,r,k-res);
}
int n,m;
int a[maxn],b[maxn];
int main(){
	n = read(),m = read();
	for (int i = 1;i <= n;i++) a[i] = b[i] = read();
	sort(b+1,b+n+1);
	int len = unique(b+1,b+n+1)-b-1;
	for (int i = 1;i <= n;i++) a[i] = lower_bound(b+1,b+len+1,a[i])-b;
	for (int i = 1;i <= n;i++) modify(root[i],root[i-1],1,len,a[i],1);
	for (int i = 1;i <= m;i++){
		int l = read(),r = read(),k = read();
		printf("%d\n",b[query(root[r],root[l-1],1,len,k)]);
	}
	return 0;
}

四、动态区间kth

还是要想办法维护前缀和。如果只是同3的前缀和的话,就要对前缀和进行O(nlogn)的单次修改,显然TLE。

这里考虑用树状数组维护前缀和。修改时,可以只修改logn个位置,复杂度\(O(log^2n)\)

查询时,依旧是R位置减去L-1位置,这时候不再是两棵线段树作差,而是log棵线段树与log棵线段树作差;跳的时候,log个节点一起跳到左子树/右子树

时间复杂度\(O(nlog^2n)\) 空间复杂度O(nlogn)

树套树总结

标签:int   查询   +=   树状   tchar   amp   get   nod   前缀和   

原文地址:https://www.cnblogs.com/little-uu/p/14878467.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!