标签:pcl 第三方 这一 tco int ram 完成 src 使用
?加载:将class文件字节码内容加载到内存中,并将这些静态数据转换成方法区的运行时
数据结构,然后生成一个代表这个类的java.lang.Class对象,作为方法区中类数据的访问
入口(即引用地址)。所有需要访问和使用类数据只能通过这个Class对象。这个加载的
过程需要类加载器参与。
?链接:将Java类的二进制代码合并到JVM的运行状态之中的过程。
?验证:确保加载的类信息符合JVM规范,例如:以cafe开头,没有安全方面的问题
?准备:正式为类变量(static)分配内存并 设置类变量默认初始值的阶段,这些内存
都将在方法区中进行分配。
?解析:虚拟机常量池内的符号引用(常量名)替换为直接引用(地址)的过程。
?初始化:
?执行类构造器<clinit>()方法的过程。类构造器<clinit>()方法是由编译期自动收集类中
所有类变量的赋值动作和静态代码块中的语句合并产生的。(类构造器是构造类信
息的,不是构造该类对象的构造器)。
?当初始化一个类的时候,如果发现其父类还没有进行初始化,则需要先触发其父类
的初始化。
?虚拟机会保证一个类的<clinit>()方法在多线程环境中被正确加锁和同步。
双亲委派模式是在Java 1.2后引入的,其工作原理的是,如果一个类加载器收到了类加载请求,它并不会自己先去加载,而是把这个请求委托给父类的加载器去执行,如果父类加载器还存在其父类加载器,则进一步向上委托,依次递归,请求最终将到达顶层的启动类加载器,如果父类加载器可以完成类加载任务,就成功返回,倘若父类加载器无法完成此加载任务,子加载器才会尝试自己去加载,这就是双亲委派模式,即每个儿子都很懒,每次有活就丢给父亲去干,直到父亲说这件事我也干不了时,儿子自己想办法去完成,这不就是传说中的实力坑爹啊?那么采用这种模式有啥用呢?
##双亲委派模式优势
采用双亲委派模式的是好处是Java类随着它的类加载器一起具备了一种带有优先级的层次关系,通过这种层级关可以避免类的重复加载,当父亲已经加载了该类时,就没有必要子ClassLoader再加载一次。其次是考虑到安全因素,java核心api中定义类型不会被随意替换,假设通过网络传递一个名为java.lang.Integer的类,通过双亲委托模式传递到启动类加载器,而启动类加载器在核心Java API发现这个名字的类,发现该类已被加载,并不会重新加载网络传递的过来的java.lang.Integer,而直接返回已加载过的Integer.class,这样便可以防止核心API库被随意篡改。可能你会想,如果我们在classpath路径下自定义一个名为java.lang.SingleInterge类(该类是胡编的)呢?该类并不存在java.lang中,经过双亲委托模式,传递到启动类加载器中,由于父类加载器路径下并没有该类,所以不会加载,将反向委托给子类加载器加载,最终会通过系统类加载器加载该类。但是这样做是不允许,因为java.lang是核心API包,需要访问权限,强制加载将会报出如下异常
前置知识: java类加载器不完整分析
#前言
此前我对线程上下文类加载器(ThreadContextClassLoader,下文使用TCCL表示)的理解仅仅局限于下面这段话:
Java 提供了很多服务提供者接口(Service Provider Interface,SPI),允许第三方为这些接口提供实现。常见的 SPI 有 JDBC、JCE、JNDI、JAXP 和 JBI 等。
这些 SPI 的接口由 Java 核心库来提供,而这些 SPI 的实现代码则是作为 Java 应用所依赖的 jar 包被包含进类路径(CLASSPATH)里。SPI接口中的代码经常需要加载具体的实现类。那么问题来了,SPI的接口是Java核心库的一部分,是由**启动类加载器(Bootstrap Classloader)来加载的;SPI的实现类是由系统类加载器(System ClassLoader)**来加载的。引导类加载器是无法找到 SPI 的实现类的,因为依照双亲委派模型,BootstrapClassloader无法委派AppClassLoader来加载类。
而线程上下文类加载器破坏了“双亲委派模型”,可以在执行线程中抛弃双亲委派加载链模式,使程序可以逆向使用类加载器。
一直困恼我的问题就是,它是如何打破了双亲委派模型?又是如何逆向使用类加载器了?直到今天看了jdbc的驱动加载过程才茅塞顿开,其实并不复杂,只是一直没去看代码导致理解不够到位。
JDBC案例分析
我们先来看平时是如何使用mysql获取数据库连接的:
// 加载Class到AppClassLoader(系统类加载器),然后注册驱动类
// Class.forName("com.mysql.jdbc.Driver").newInstance();
String url = "jdbc:mysql://localhost:3306/testdb";
// 通过java库获取数据库连接
Connection conn = java.sql.DriverManager.getConnection(url, "name", "password");
以上就是mysql注册驱动及获取connection的过程,各位可以发现经常写的Class.forName被注释掉了,但依然可以正常运行,这是为什么呢?这是因为从Java1.6开始自带的jdbc4.0版本已支持SPI服务加载机制,只要mysql的jar包在类路径中,就可以注册mysql驱动。
那到底是在哪一步自动注册了mysql driver的呢?重点就在DriverManager.getConnection()中。我们都是知道调用类的静态方法会初始化该类,进而执行其静态代码块,DriverManager的静态代码块就是:
static {
loadInitialDrivers();
println("JDBC DriverManager initialized");
}
初始化方法loadInitialDrivers()的代码如下:
private static void loadInitialDrivers() {
String drivers;
try {
// 先读取系统属性
drivers = AccessController.doPrivileged(new PrivilegedAction<String>() {
public String run() {
return System.getProperty("jdbc.drivers");
}
});
} catch (Exception ex) {
drivers = null;
}
// 通过SPI加载驱动类
AccessController.doPrivileged(new PrivilegedAction<Void>() {
public Void run() {
ServiceLoader<Driver> loadedDrivers = ServiceLoader.load(Driver.class);
Iterator<Driver> driversIterator = loadedDrivers.iterator();
try{
while(driversIterator.hasNext()) {
driversIterator.next();
}
} catch(Throwable t) {
// Do nothing
}
return null;
}
});
// 继续加载系统属性中的驱动类
if (drivers == null || drivers.equals("")) {
return;
}
String[] driversList = drivers.split(":");
println("number of Drivers:" + driversList.length);
for (String aDriver : driversList) {
try {
println("DriverManager.Initialize: loading " + aDriver);
// 使用AppClassloader加载
Class.forName(aDriver, true,
ClassLoader.getSystemClassLoader());
} catch (Exception ex) {
println("DriverManager.Initialize: load failed: " + ex);
}
}
}
从上面可以看出JDBC中的DriverManager的加载Driver的步骤顺序依次是:
通过SPI方式,读取 META-INF/services 下文件中的类名,使用TCCL加载;
通过System.getProperty("jdbc.drivers")获取设置,然后通过系统类加载器加载。
下面详细分析SPI加载的那段代码。
JDBC中的SPI
先来看看什么是SP机制,引用一段博文中的介绍:
SPI机制简介
SPI的全名为Service Provider Interface,主要是应用于厂商自定义组件或插件中。在java.util.ServiceLoader的文档里有比较详细的介绍。简单的总结下java SPI机制的思想:我们系统里抽象的各个模块,往往有很多不同的实现方案,比如日志模块、xml解析模块、jdbc模块等方案。面向的对象的设计里,我们一般推荐模块之间基于接口编程,模块之间不对实现类进行硬编码。一旦代码里涉及具体的实现类,就违反了可拔插的原则,如果需要替换一种实现,就需要修改代码。为了实现在模块装配的时候能不在程序里动态指明,这就需要一种服务发现机制。 Java SPI就是提供这样的一个机制:为某个接口寻找服务实现的机制。有点类似IOC的思想,就是将装配的控制权移到程序之外,在模块化设计中这个机制尤其重要。
SPI具体约定
Java SPI的具体约定为:当服务的提供者提供了服务接口的一种实现之后,在jar包的META-INF/services/目录里同时创建一个以服务接口命名的文件。该文件里就是实现该服务接口的具体实现类。而当外部程序装配这个模块的时候,就能通过该jar包META-INF/services/里的配置文件找到具体的实现类名,并装载实例化,完成模块的注入。基于这样一个约定就能很好的找到服务接口的实现类,而不需要再代码里制定。jdk提供服务实现查找的一个工具类:java.util.ServiceLoader。
知道SPI的机制后,我们来看刚才的代码:
ServiceLoader<Driver> loadedDrivers = ServiceLoader.load(Driver.class);
Iterator<Driver> driversIterator = loadedDrivers.iterator();
try{
while(driversIterator.hasNext()) {
driversIterator.next();
}
} catch(Throwable t) {
// Do nothing
}
注意driversIterator.next()最终就是调用Class.forName(DriverName, false, loader)方法,也就是最开始我们注释掉的那一句代码。好,那句因SPI而省略的代码现在解释清楚了,那我们继续看给这个方法传的loader是怎么来的。
因为这句Class.forName(DriverName, false, loader)代码所在的类在java.util.ServiceLoader类中,而ServiceLoader.class又加载在BootrapLoader中,因此传给 forName 的 loader 必然不能是BootrapLoader,复习双亲委派加载机制请看:java类加载器不完整分析 。这时候只能使用TCCL了,也就是说把自己加载不了的类加载到TCCL中(通过Thread.currentThread()获取,简直作弊啊!)。上面那篇文章末尾也讲到了TCCL默认使用当前执行的是代码所在应用的系统类加载器AppClassLoader。
再看下看ServiceLoader.load(Class)的代码,的确如此:
public static <S> ServiceLoader<S> load(Class<S> service) {
ClassLoader cl = Thread.currentThread().getContextClassLoader();
return ServiceLoader.load(service, cl);
}
ContextClassLoader默认存放了AppClassLoader的引用,由于它是在运行时被放在了线程中,所以不管当前程序处于何处(BootstrapClassLoader或是ExtClassLoader等),在任何需要的时候都可以用Thread.currentThread().getContextClassLoader()取出应用程序类加载器来完成需要的操作。
到这儿差不多把SPI机制解释清楚了。直白一点说就是,我(JDK)提供了一种帮你(第三方实现者)加载服务(如数据库驱动、日志库)的便捷方式,只要你遵循约定(把类名写在/META-INF里),那当我启动时我会去扫描所有jar包里符合约定的类名,再调用forName加载,但我的ClassLoader是没法加载的,那就把它加载到当前执行线程的TCCL里,后续你想怎么操作(驱动实现类的static代码块)就是你的事了。
好,刚才说的驱动实现类就是com.mysql.jdbc.Driver.Class,它的静态代码块里头又写了什么呢?是否又用到了TCCL呢?我们继续看下一个例子。
校验实例的归属
com.mysql.jdbc.Driver加载后运行的静态代码块:
static {
try {
// Driver已经加载到TCCL中了,此时可以直接实例化
java.sql.DriverManager.registerDriver(new com.mysql.jdbc.Driver());
} catch (SQLException E) {
throw new RuntimeException("Can‘t register driver!");
}
}
registerDriver方法将driver实例注册到系统的java.sql.DriverManager类中,其实就是add到它的一个名为registeredDrivers的静态成员CopyOnWriteArrayList中 。
到此驱动注册基本完成,接下来我们回到最开始的那段样例代码:java.sql.DriverManager.getConnection()。它最终调用了以下方法:
private static Connection getConnection(
String url, java.util.Properties info, Class<?> caller) throws SQLException {
/* 传入的caller由Reflection.getCallerClass()得到,该方法
* 可获取到调用本方法的Class类,这儿获取到的是当前应用的类加载器
*/
ClassLoader callerCL = caller != null ? caller.getClassLoader() : null;
synchronized(DriverManager.class) {
if (callerCL == null) {
callerCL = Thread.currentThread().getContextClassLoader();
}
}
if(url == null) {
throw new SQLException("The url cannot be null", "08001");
}
SQLException reason = null;
// 遍历注册到registeredDrivers里的Driver类
for(DriverInfo aDriver : registeredDrivers) {
// 检查Driver类有效性
if(isDriverAllowed(aDriver.driver, callerCL)) {
try {
println(" trying " + aDriver.driver.getClass().getName());
// 调用com.mysql.jdbc.Driver.connect方法获取连接
Connection con = aDriver.driver.connect(url, info);
if (con != null) {
// Success!
return (con);
}
} catch (SQLException ex) {
if (reason == null) {
reason = ex;
}
}
} else {
println(" skipping: " + aDriver.getClass().getName());
}
}
throw new SQLException("No suitable driver found for "+ url, "08001");
}
private static boolean isDriverAllowed(Driver driver, ClassLoader classLoader) {
boolean result = false;
if(driver != null) {
Class<?> aClass = null;
try {
// 传入的classLoader为调用getConnetction的当前类加载器,从中寻找driver的class对象
aClass = Class.forName(driver.getClass().getName(), true, classLoader);
} catch (Exception ex) {
result = false;
}
// 注意,只有同一个类加载器中的Class使用==比较时才会相等,此处就是校验用户注册Driver时该Driver所属的类加载器与调用时的是否同一个
// driver.getClass()拿到就是当初执行Class.forName("com.mysql.jdbc.Driver")时的应用AppClassLoader
result = ( aClass == driver.getClass() ) ? true : false;
}
return result;
}
由于TCCL本质就是当前应用类加载器,所以之前的初始化就是加载在当前的类加载器中,这一步就是校验存放的driver是否属于调用者的Classloader。例如在下文中的tomcat里,多个webapp都有自己的Classloader,如果它们都自带 mysql-connect.jar包,那底层Classloader的DriverManager里将注册多个不同类加载器的Driver实例,想要区分只能靠TCCL了。
Tomcat与spring的类加载器案例
接下来将介绍《深入理解java虚拟机》一书中的案例,并解答它所提出的问题。(部分类容来自于书中原文)
Tomcat中的类加载器
在Tomcat目录结构中,有三组目录(“/common/*”,“/server/*”和“shared/*”)可以存放公用Java类库,此外还有第四组Web应用程序自身的目录“/WEB-INF/*”,把java类库放置在这些目录中的含义分别是:
放置在common目录中:类库可被Tomcat和所有的Web应用程序共同使用。
放置在server目录中:类库可被Tomcat使用,但对所有的Web应用程序都不可见。
放置在shared目录中:类库可被所有的Web应用程序共同使用,但对Tomcat自己不可见。
放置在/WebApp/WEB-INF目录中:类库仅仅可以被此Web应用程序使用,对Tomcat和其他Web应用程序都不可见。
为了支持这套目录结构,并对目录里面的类库进行加载和隔离,Tomcat自定义了多个类加载器,这些类加载器按照经典的双亲委派模型来实现,如下图所示
灰色背景的3个类加载器是JDK默认提供的类加载器,这3个加载器的作用前面已经介绍过了。而 CommonClassLoader、CatalinaClassLoader、SharedClassLoader 和 WebAppClassLoader 则是 Tomcat 自己定义的类加载器,它们分别加载 /common/*、/server/*、/shared/* 和 /WebApp/WEB-INF/* 中的 Java 类库。其中 WebApp 类加载器和 Jsp 类加载器通常会存在多个实例,每一个 Web 应用程序对应一个 WebApp 类加载器,每一个 JSP 文件对应一个 Jsp 类加载器。
从图中的委派关系中可以看出,CommonClassLoader 能加载的类都可以被 CatalinaClassLoader 和 SharedClassLoader 使用,而 CatalinaClassLoader 和 SharedClassLoader 自己能加载的类则与对方相互隔离。WebAppClassLoader 可以使用 SharedClassLoader 加载到的类,但各个 WebAppClassLoader 实例之间相互隔离。而 JasperLoader 的加载范围仅仅是这个 JSP 文件所编译出来的那一个 Class,它出现的目的就是为了被丢弃:当服务器检测到 JSP 文件被修改时,会替换掉目前的 JasperLoader 的实例,并通过再建立一个新的 Jsp 类加载器来实现 JSP 文件的 HotSwap 功能。
Spring加载问题
Tomcat 加载器的实现清晰易懂,并且采用了官方推荐的“正统”的使用类加载器的方式。这时作者提一个问题:如果有 10 个 Web 应用程序都用到了spring的话,可以把Spring的jar包放到 common 或 shared 目录下让这些程序共享。Spring 的作用是管理每个web应用程序的bean,getBean时自然要能访问到应用程序的类,而用户的程序显然是放在 /WebApp/WEB-INF 目录中的(由 WebAppClassLoader 加载),那么在 CommonClassLoader 或 SharedClassLoader 中的 Spring 容器如何去加载并不在其加载范围的用户程序(/WebApp/WEB-INF/)中的Class呢?
解答
答案呼之欲出:spring根本不会去管自己被放在哪里,它统统使用TCCL来加载类,而TCCL默认设置为了WebAppClassLoader,也就是说哪个WebApp应用调用了spring,spring就去取该应用自己的WebAppClassLoader来加载bean,简直完美~
源码分析
有兴趣的可以接着看看具体实现。在web.xml中定义的listener为org.springframework.web.context.ContextLoaderListener,它最终调用了org.springframework.web.context.ContextLoader类来装载bean,具体方法如下(删去了部分不相关内容):
public WebApplicationContext initWebApplicationContext(ServletContext servletContext) {
try {
// 创建WebApplicationContext
if (this.context == null) {
this.context = createWebApplicationContext(servletContext);
}
// 将其保存到该webapp的servletContext中
servletContext.setAttribute(WebApplicationContext.ROOT_WEB_APPLICATION_CONTEXT_ATTRIBUTE, this.context);
// 获取线程上下文类加载器,默认为WebAppClassLoader
ClassLoader ccl = Thread.currentThread().getContextClassLoader();
// 如果spring的jar包放在每个webapp自己的目录中
// 此时线程上下文类加载器会与本类的类加载器(加载spring的)相同,都是WebAppClassLoader
if (ccl == ContextLoader.class.getClassLoader()) {
currentContext = this.context;
}
else if (ccl != null) {
// 如果不同,也就是上面说的那个问题的情况,那么用一个map把刚才创建的WebApplicationContext及对应的WebAppClassLoader存下来
// 一个webapp对应一个记录,后续调用时直接根据WebAppClassLoader来取出
currentContextPerThread.put(ccl, this.context);
}
return this.context;
}
catch (RuntimeException ex) {
logger.error("Context initialization failed", ex);
throw ex;
}
catch (Error err) {
logger.error("Context initialization failed", err);
throw err;
}
}
具体说明都在注释中,spring考虑到了自己可能被放到其他位置,所以直接用TCCL来解决所有可能面临的情况。
总结
通过上面的两个案例分析,我们可以总结出线程上下文类加载器的适用场景:
当高层提供了统一接口让低层去实现,同时又要是在高层加载(或实例化)低层的类时,必须通过线程上下文类加载器来帮助高层的ClassLoader找到并加载该类。
当使用本类托管类加载,然而加载本类的ClassLoader未知时,为了隔离不同的调用者,可以取调用者各自的线程上下文类加载器代为托管。
标签:pcl 第三方 这一 tco int ram 完成 src 使用
原文地址:https://www.cnblogs.com/CCTVCHCH/p/14926158.html