码迷,mamicode.com
首页 > 其他好文 > 详细

信息熵,交叉熵与KL散度

时间:2021-06-30 18:03:09      阅读:0      评论:0      收藏:0      [点我收藏+]

标签:inline   有关   有监督   ||   机器   函数   定义   训练   标签   

一、信息熵

若一个离散随机变量 \(X\) 的可能取值为 \(X = \{ x_{1}, x_{2},...,x_{n}\}\),且对应的概率为:

\[p(x_{i}) = p(X=x_{i}) \]

那么随机变量 \(X\) 的熵定义为:

\[H(X) = -\sum_{i=1}^{n}p(x_{i})logp(x_{i}) \]

规定当 \(p(x_{i})=0\) 时,\(H(X)=0\)

通过公式可以看出,若随机变量 \(X\) 的取值等概率分布,即 \(p(x_{i} = p(x_{j}), i \neq j\) 时,\(H(X)\) 最大。

直观理解:信息熵表达的时随机变量 \(X\) 所含的信息量,当 \(X\) 中所有取值都等概率时,包含的信息量就越多,就需要用更多的信息来描述它。如果知道了 \(X\) 中取哪个值概率最大,那么描述它所需要的信息就越少,\(H(X)\) 就越小。换句话说,信息熵表明了信息的无序状态。

二、交叉熵

交叉熵定义为用模拟分布 \(q\) 来编码真实分布 \(p\) 所需要的平均编码长度比特个数:

\[H(p,q) = \sum_{i=1}^{n}p_{i}log\dfrac{1}{q_{i}} = -\sum_{i=1}^{n}p_{i}q_{i} \]

拿一个三分类问题举例,加入标签通过 one-hot 编码后的目标为 \([1,0,0]\),那么当预测完全准确时,模拟分布 \(q\) 的熵为:

\[H(q) = -\sum_{i=1}^{n}q_{i}log(q_{i}) = -(1 \times log 1 + 0 \times log 0 + 0 \times log(0)) = 0 \]

因此,在使用交叉熵作为损失函数执行分类任务时,通常使目标函数趋近于0。加入模型预测出来的结果为:\(p = [0.7, 0.2, 0.1]\),那么 \(p, q\) 的交叉熵为:

\[H(p,q) = -\sum_{i=1}^{n}p_{i}log(q_{i}) = -(1 \times log (0.7) + 0 \times log (0.2) + 0 \times log(0.1)) = -log(0.7) \]

为什么在分类任务中多用交叉熵而不是MSE作为损失函数?我们以二分类问题为例来解释这个问题。假设训练数据集为:\(T = \{ (x_{1},y_{1}),(x_{2},y_{2}),...,(x_{n},y_{n})\}\),其中 \(y_{i} \in \{0,1\}\)。网络的输出为:\(z = w^{T}x\),标签为 \(p = \{1,0\}\)。于是最后对网络所预测的概率值为:\(q = \sigma(z)\),其中 \(\sigma()\) 代表 sigmoid 激活函数:

\[\sigma(z) = \dfrac{1}{1+e^{-z}}\quad\sigma‘(z) = \sigma(z)(1-\sigma(z)) \]

若使用 MSE 作为损失函数,则:

\[L = \dfrac{1}{2}||q-p||^{2} \\dfrac{\partial L}{\partial w} = \dfrac{\partial L}{\partial q} \times \dfrac{\partial q}{\partial z} \times \dfrac{\partial z}{\partial w} = (q-p)\sigma‘(z)x = (q-p)\sigma(z)(1-\sigma(z))x \]

而使用交叉熵作为损失函数,则:

\[L = -\sum_{i=1}^{n}p_{i}ln(q_{i}) = -(pln(q)+(1-p)ln(1-q))\\dfrac{\partial L}{\partial w} = \dfrac{\partial L}{\partial q} \times \dfrac{\partial q}{\partial z} \times \dfrac{\partial z}{\partial w} = (-\dfrac{p}{q}+\dfrac{1-p}{1-q})\sigma‘(z)x = (q-p)x \]

对比之下发现,由于sigmoid 函数在输出接近0和1时,梯度很小,而使用 MSE 做损失函数时模型参数w会更新的比较慢,因此分类问题多采用交叉熵作为损失函数。

个人认为,使用交叉熵而不是用MSE的另一个原因在于,交叉熵损失函数的理想分类结果只与正确样本有关,而MSE损失函数与正误样本都有关系。

三、相对熵(\(KL\)散度)

相对熵用来表示两个概率分布的差异,它表示2个函数或概率分布的差异性:差异越大则相对熵越大,差异越小则相对熵越小,特别地,若2者相同则熵为0。公式表示如下:

\[D_{KL}(p||q) = -\sum_{i=1}^{n}p(x_{i})log(\dfrac{p(x_{i})}{q(x_{i}))} = H(p,q)-H(p) \]

于是,相对熵=交叉熵-信息熵。而在有监督的机器学习和深度学习中,往往已经有了真实的样本(随机变量)和标签(label),因此可以理解为实际的概率分布 \(p\) 已知,而训练所得到的分布为 \(q\),那么信息熵 \(H_{p}\) 相当于常量,所以可以直接用交叉熵 \(H(p,q)\) 来衡量两个独立概率分布的差异。

信息熵,交叉熵与KL散度

标签:inline   有关   有监督   ||   机器   函数   定义   训练   标签   

原文地址:https://www.cnblogs.com/zhaozhibo/p/14950485.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!