标签:style bat 训练 重复 顺序 div 概念 个数 随机梯度下降
每次只选取1个样本,然后根据运行结果调整参数,这就是著名的随机梯度下降(SGD
),而且可称为批大小(batch size
)为 1 的 SGD
。
批大小,就是每次调整参数前所选取的样本(称为mini-batch
或batch
)数量:
那么批大小是否越大越好?绝非如此,很多时候恰好相反。合适的批大小对于网络的训练很重要。
训练中的另一个重要概念是epoch。每学一遍数据集,就称为1个epoch。
举例,若数据集中有1000个样本,批大小为10,那么将全部样本训练1遍后,网络会被调整1000/10=100次。但这并不意味着网络已达到最优,我们可重复这个过程,让网络再学1遍、2遍、3遍数据集。
注意每一个epoch都需打乱数据的顺序,以使网络受到的调整更具有多样性。同时,我们会不断监督网络的训练效果。通常情况下,网络的性能提高速度会越来越慢,在几十到几百个epoch后网络的性能会趋于稳定,即性能基本不再提高。
标签:style bat 训练 重复 顺序 div 概念 个数 随机梯度下降
原文地址:https://www.cnblogs.com/BlairGrowing/p/15022389.html