昨天经过几个小时的学习,把MapReduce的第一个阶段的过程学习了一下,也就是最最开始的时候从文件中的Data到key-value的映射,也就是InputFormat的过程。虽说过程不是很难,但是也存在很多细节的。也很少会有人对此做比较细腻的研究,学习。今天,就让我来为大家剖析一下这段代码的原理。我还为此花了一点时间做了几张结构图,便于大家理解。在这里先声明一下,我研究的MapReduce主要研究的是旧版的API,也就是mapred包下的。
InputFormat最最原始的形式就是一个接口。后面出现的各种Format都是他的衍生类。结构如下,只包含最重要的2个方法:
public interface InputFormat<K, V> { /** * Logically split the set of input files for the job. * * <p>Each {@link InputSplit} is then assigned to an individual {@link Mapper} * for processing.</p> * * <p><i>Note</i>: The split is a <i>logical</i> split of the inputs and the * input files are not physically split into chunks. For e.g. a split could * be <i><input-file-path, start, offset></i> tuple. * * @param job job configuration. * @param numSplits the desired number of splits, a hint. * @return an array of {@link InputSplit}s for the job. */ InputSplit[] getSplits(JobConf job, int numSplits) throws IOException; /** * Get the {@link RecordReader} for the given {@link InputSplit}. * * <p>It is the responsibility of the <code>RecordReader</code> to respect * record boundaries while processing the logical split to present a * record-oriented view to the individual task.</p> * * @param split the {@link InputSplit} * @param job the job that this split belongs to * @return a {@link RecordReader} */ RecordReader<K, V> getRecordReader(InputSplit split, JobConf job, Reporter reporter) throws IOException; }所以后面讲解,我也只是会围绕这2个方法进行分析。当然我们用的最多的是从文件中获得输入数据,也就是FileInputFormat这个类。继承关系如下:
public abstract class FileInputFormat<K, V> implements InputFormat<K, V>我们看里面的1个主要方法:
public InputSplit[] getSplits(JobConf job, int numSplits)返回的类型是一个InputSpilt对象,这是一个抽象的输入Spilt分片概念。结构如下:
public interface InputSplit extends Writable { /** * Get the total number of bytes in the data of the <code>InputSplit</code>. * * @return the number of bytes in the input split. * @throws IOException */ long getLength() throws IOException; /** * Get the list of hostnames where the input split is located. * * @return list of hostnames where data of the <code>InputSplit</code> is * located as an array of <code>String</code>s. * @throws IOException */ String[] getLocations() throws IOException; }提供了与数据相关的2个方法。后面这个返回的值会被用来传递给RecordReader里面去的。在想理解getSplits方法之前还有一个类需要理解,FileStatus,里面包装了一系列的文件基本信息方法:
public class FileStatus implements Writable, Comparable { private Path path; private long length; private boolean isdir; private short block_replication; private long blocksize; private long modification_time; private long access_time; private FsPermission permission; private String owner; private String group;.....
看到这里你估计会有点晕了,下面是我做的一张小小类图关系:
可以看到,FileSpilt为了兼容新老版本,继承了新的抽象类InputSpilt,同时附上旧的接口形式的InputSpilt。下面我们看看里面的getspilt核心过程:
/** Splits files returned by {@link #listStatus(JobConf)} when * they're too big.*/ @SuppressWarnings("deprecation") public InputSplit[] getSplits(JobConf job, int numSplits) throws IOException { //获取所有的状态文件 FileStatus[] files = listStatus(job); // Save the number of input files in the job-conf //在job-cof中保存文件的数量 job.setLong(NUM_INPUT_FILES, files.length); long totalSize = 0; // compute total size,计算文件总的大小 for (FileStatus file: files) { // check we have valid files if (file.isDir()) { //如果是目录不是纯文件的直接抛异常 throw new IOException("Not a file: "+ file.getPath()); } totalSize += file.getLen(); } //用户期待的划分大小,总大小除以spilt划分数目 long goalSize = totalSize / (numSplits == 0 ? 1 : numSplits); //获取系统的划分最小值 long minSize = Math.max(job.getLong("mapred.min.split.size", 1), minSplitSize); // generate splits //创建numSplits个FileSpilt文件划分量 ArrayList<FileSplit> splits = new ArrayList<FileSplit>(numSplits); NetworkTopology clusterMap = new NetworkTopology(); for (FileStatus file: files) { Path path = file.getPath(); FileSystem fs = path.getFileSystem(job); long length = file.getLen(); //获取此文件的block的位置列表 BlockLocation[] blkLocations = fs.getFileBlockLocations(file, 0, length); //如果文件系统可划分 if ((length != 0) && isSplitable(fs, path)) { //计算此文件的总的block块的大小 long blockSize = file.getBlockSize(); //根据期待大小,最小大小,得出最终的split分片大小 long splitSize = computeSplitSize(goalSize, minSize, blockSize); long bytesRemaining = length; //如果剩余待划分字节倍数为划分大小超过1.1的划分比例,则进行拆分 while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) { //获取提供数据的splitHost位置 String[] splitHosts = getSplitHosts(blkLocations, length-bytesRemaining, splitSize, clusterMap); //添加FileSplit splits.add(new FileSplit(path, length-bytesRemaining, splitSize, splitHosts)); //数量减少splitSize大小 bytesRemaining -= splitSize; } if (bytesRemaining != 0) { //添加刚刚剩下的没划分完的部分,此时bytesRemaining已经小于splitSize的1.1倍了 splits.add(new FileSplit(path, length-bytesRemaining, bytesRemaining, blkLocations[blkLocations.length-1].getHosts())); } } else if (length != 0) { //不划分,直接添加Spilt String[] splitHosts = getSplitHosts(blkLocations,0,length,clusterMap); splits.add(new FileSplit(path, 0, length, splitHosts)); } else { //Create empty hosts array for zero length files splits.add(new FileSplit(path, 0, length, new String[0])); } } //最后返回FileSplit数组 LOG.debug("Total # of splits: " + splits.size()); return splits.toArray(new FileSplit[splits.size()]); }里面有个computerSpiltSize方法很特殊,考虑了很多情况,总之最小值不能小于系统设定的最小值。要与期待值,块大小,系统允许最小值:
protected long computeSplitSize(long goalSize, long minSize, long blockSize) { return Math.max(minSize, Math.min(goalSize, blockSize)); }上述过程的相应流程图如下:
3种情况3中年执行流程。
处理完getSpilt方法然后,也就是说已经把数据从文件中转划到InputSpilt中了,接下来就是给RecordRead去取出里面的一条条的记录了。当然这在FileInputFormat是抽象方法,必须由子类实现的,我在这里挑出了2个典型的子类SequenceFileInputFormat,和TextInputFormat。他们的实现RecordRead方法如下:
public RecordReader<K, V> getRecordReader(InputSplit split, JobConf job, Reporter reporter) throws IOException { reporter.setStatus(split.toString()); return new SequenceFileRecordReader<K, V>(job, (FileSplit) split); }
public RecordReader<LongWritable, Text> getRecordReader( InputSplit genericSplit, JobConf job, Reporter reporter) throws IOException { reporter.setStatus(genericSplit.toString()); return new LineRecordReader(job, (FileSplit) genericSplit); }
/** An {@link RecordReader} for {@link SequenceFile}s. */ public class SequenceFileRecordReader<K, V> implements RecordReader<K, V> { private SequenceFile.Reader in; private long start; private long end; private boolean more = true; protected Configuration conf; public SequenceFileRecordReader(Configuration conf, FileSplit split) throws IOException { Path path = split.getPath(); FileSystem fs = path.getFileSystem(conf); //从文件系统中读取数据输入流 this.in = new SequenceFile.Reader(fs, path, conf); this.end = split.getStart() + split.getLength(); this.conf = conf; if (split.getStart() > in.getPosition()) in.sync(split.getStart()); // sync to start this.start = in.getPosition(); more = start < end; } ...... /** * 获取下一个键值对 */ public synchronized boolean next(K key, V value) throws IOException { //判断还有无下一条记录 if (!more) return false; long pos = in.getPosition(); boolean remaining = (in.next(key) != null); if (remaining) { getCurrentValue(value); } if (pos >= end && in.syncSeen()) { more = false; } else { more = remaining; } return more; }我们可以看到SequenceFileRecordReader是从输入流in中一个键值,一个键值的读取,另外一个的实现方式如下:
/** * Treats keys as offset in file and value as line. */ public class LineRecordReader implements RecordReader<LongWritable, Text> { private static final Log LOG = LogFactory.getLog(LineRecordReader.class.getName()); private CompressionCodecFactory compressionCodecs = null; private long start; private long pos; private long end; private LineReader in; int maxLineLength; .... /** Read a line. */ public synchronized boolean next(LongWritable key, Text value) throws IOException { while (pos < end) { //设置key key.set(pos); //根据位置一行一行读取,设置value int newSize = in.readLine(value, maxLineLength, Math.max((int)Math.min(Integer.MAX_VALUE, end-pos), maxLineLength)); if (newSize == 0) { return false; } pos += newSize; if (newSize < maxLineLength) { return true; } // line too long. try again LOG.info("Skipped line of size " + newSize + " at pos " + (pos - newSize)); } return false; }实现的方式为通过读的位置,从输入流中逐行读取key-value。通过这2种方法,就能得到新的key-value,就会用于后面的map操作。
InputFormat的整个流程其实我忽略了很多细节。大体流程如上述所说。
原文地址:http://blog.csdn.net/androidlushangderen/article/details/41114259