标签:style http io color ar os sp for on
UVA10105 - Polynomial Coefficients(排列组合)
题目大意:给你k个数,然后求(x1 + x2 + x3 +.. + xk)^n的x1^n1x2^n2x3^n3...xk^nk这个数的系数。题目会给n和k,然后给出k个ni,并且保证n1+ n2 + ..+nk = n.
解题思路:根据二项式的系数的求法,类似的也用组合来求这个数的系数。对于这个x1^n1..xk^nk这个数的系数,就等于每个单独的xi^ni的系数的积。容易得出这个数的系数是
n!/(n1!?(n
- n1)!) ?
(n - n1)! / (n2!
?
(n - n1 - n2)!) ?
... ?
nk!/(nk!?(n
- n1 - n2 -..-nk)!),化简后得n!/ (n1!?n2!?n3!?..?nk!).
代码:
#include <cstdio>
#include <cstring>
typedef long long ll;
const int maxn = 13;
ll c[maxn];
void init () {
c[0] = 1;
for (int i = 1; i < maxn; i++)
c[i] = c[i - 1] * i;
}
int main () {
int N, K, num;
init();
while (scanf ("%d%d", &N, &K) != EOF) {
ll ans = c[N];
for (int i = 0; i < K; i++) {
scanf ("%d", &num);
ans /= c[num];
N -= num;
}
printf ("%lld\n", ans);
}
return 0;
}
UVA10105 - Polynomial Coefficients(排列组合)
标签:style http io color ar os sp for on
原文地址:http://blog.csdn.net/u012997373/article/details/41119761