题目链接:
POJ:http://poj.org/problem?id=3831
HDU:http://acm.hdu.edu.cn/showproblem.php?pid=3264
Description
Input
Output
Sample Input
1 2 0 0 1 2 0 1
Sample Output
2.0822
Source
题意:
给出一些圆,选择其中一个圆的圆心为圆心,然后画一个大圆,要求大圆最少覆盖每个圆的一半面积。求最小面积。
代码如下:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;
const double eps = 1e-8;
const double PI = acos(-1.0);
int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0) return - 1;
else return 1;
}
struct Point
{
double x, y, r;
Point() {}
Point(double _x, double _y)
{
x = _x;
y = _y;
}
Point operator -( const Point &b) const
{
return Point(x - b. x, y - b. y);
}
//叉积
double operator ^ (const Point &b) const
{
return x*b. y - y*b. x;
}
//点积
double operator * (const Point &b) const
{
return x*b. x + y*b. y;
}
//绕原点旋转角度B(弧度值),后x,y的变化
void transXY(double B)
{
double tx = x,ty = y;
x = tx* cos(B) - ty*sin(B);
y = tx* sin(B) + ty*cos(B);
}
};
Point p[47];
//*两点间距离
double dist( Point a, Point b)
{
return sqrt((a-b)*(a- b));
}
//两个圆的公共部分面积
double Area_of_overlap(Point c1, double r1, Point c2, double r2)
{
double d = dist(c1,c2);
if(r1 + r2 < d + eps) return 0;
if(d < fabs(r1 - r2) + eps)
{
double r = min(r1,r2);
return PI*r*r;
}
double x = (d*d + r1*r1 - r2*r2)/(2*d);
double t1 = acos(x / r1);
double t2 = acos((d - x)/r2);
return r1*r1*t1 + r2*r2*t2 - d*r1*sin(t1);
}
int main()
{
double x1, y1, r1, x2, y2, r2;
int t;
int n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i = 0; i < n; i++)
{
scanf("%lf %lf %lf",&p[i].x,&p[i].y,&p[i].r);
}
double ans = 999999;
double l, r, mid;
for(int i = 0; i < n; i++) //枚举圆心
{
l = 0;
r = 35000.0;//二分
while(r-l > eps)//能找到
{
mid = (l+r)/2.0;
int flag = 0;
for(int j = 0; j < n; j++) // 每个点
{
if(Area_of_overlap(p[i],mid,p[j],p[j].r)<p[j].r*p[j].r*PI/2.0)
{
flag = 1;//太小
break;
}
}
if(flag)
l = mid;
else
r = mid;
}
if(l < ans)
ans = l;
}
printf("%.4lf\n",ans);
}
return 0;
}POJ 3831 & HDU 3264 Open-air shopping malls(几何)
原文地址:http://blog.csdn.net/u012860063/article/details/41142759