码迷,mamicode.com
首页 > 其他好文 > 详细

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.1.3

时间:2014-11-16 11:54:28      阅读:107      评论:0      收藏:0      [点我收藏+]

标签:style   io   color   ar   os   sp   on   cti   bs   

Use the QR decomposition to prove Hadamard‘s inequality: if $X=(x_1,\cdots,x_n)$, then $$\bex |\det X|\leq \prod_{j=1}^n \sen{x_j}. \eex$$ Equality holds here if and only if the $x_j$ are mutually orthogonal or some $x_j$ are zero.

 

解答: $$\beex \bea |\det X|^2&=\det (X^*X)\\ &=\det (R^*Q^*QR)\\ &=\det (R^*R)\\ &=\prod_{j=1}^n r_{ii}^2\\ &\leq \prod_{j=1}^n \sen{x_j}^2, \eea \eeex$$ where the last inequality follows from the fact that the norm of a vector $\geq$ that of is projection (to some subspace).

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.1.3

标签:style   io   color   ar   os   sp   on   cti   bs   

原文地址:http://www.cnblogs.com/zhangzujin/p/4101243.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!