码迷,mamicode.com
首页 > 其他好文 > 详细

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]Contents

时间:2014-11-16 11:58:53      阅读:153      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   io   ar   os   sp   for   on   

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.1.3

Use the QR decomposition to prove Hadamard‘s inequality: if $X=(x_1,\cdots,x_n)$, then $$\bex |\det X|\leq \prod_{j=1}^n \sen{x_j}. \eex$$ Equality holds here if and only if the $x_j$ are mutually orthogonal or some $x_j$ are zero. 

 

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.1.2

Let $X$ be nay basis of $\scrH$ and let $Y$ be the basis biorthogonal to it. Using matrix multiplication, $X$ gives a linear transformation from $\bbC^n$ to $\scrH$. The inverse of this is given by $Y^*$. In the special case when $X$ is orthonormal (so that $Y=X$), this transformation is inner-product preserving if the standard inner product is used on $\bbC^n$. \eex$$

 

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.1.1

Given any $k$-tupel of linearly independent vectors $X$ as above, there exists a $k$-tuple $Y$ biorthognal to it. If $k=n$, this $Y$ is unique. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]Contents

标签:style   blog   http   io   ar   os   sp   for   on   

原文地址:http://www.cnblogs.com/zhangzujin/p/4101248.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!