码迷,mamicode.com
首页 > 其他好文 > 详细

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

时间:2014-11-18 23:49:24      阅读:217      评论:0      收藏:0      [点我收藏+]

标签:style   io   ar   color   sp   for   on   bs   amp   

For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and its inverse is $$\bex \sex{\ba{cc} I&-A\\ 0&I \ea}. \eex$$ Use this to show that if $A,B$ are any two $n\times n$ matrices, then $$\bex \sex{\ba{cc} I&A\\ 0&I \ea}^{-1}\sex{\ba{cc} AB&0\\ B&0 \ea} \sex{\ba{cc} I&A\\ 0&I \ea}=\sex{\ba{cc} 0&0\\ B&BA \ea}. \eex$$ This implies that $AB$ and $BA$ have the same eigenvalues.(This last fact can be proved in another way as follows. If $B$ is invertible, then $AB=B^{-1}(BA)B$. So, $AB$ and $BA$ have the same eigenvalues. Since invertible matrices are dense in the space of matrices, and a general known fact in complex analysis is that the roots of a polynomial vary continuously with the coefficients, the above conclusion also holds in general.)

 

Solution. This follows from direct computations.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

标签:style   io   ar   color   sp   for   on   bs   amp   

原文地址:http://www.cnblogs.com/zhangzujin/p/4106766.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!