标签:style http io ar color os sp for strong
最好的边缘检测子
Canny algorithm aims to satisfy three main criteria:
- Low error rate: Meaning a good detection of only existent edges.
- Good localization: The distance between edge pixels detected and real edge pixels have to be minimized.
- Minimal response: Only one detector response per edge.
1,Filter out any noise. The Gaussian filter is used for this purpose.
2,Find the intensity gradient of the image. For this, we follow a procedure analogous to Sobel:
Apply a pair of convolution masks (in and directions:
Find the gradient strength and direction with:
The direction is rounded to one of four possible angles (namely 0, 45, 90 or 135)
3,Non-maximum suppression is applied. 非最大抑制
4,Hysteresis: The final step. Canny does use two thresholds (upper and lower):
滞后性阈值
- If a pixel gradient is higher than the upper threshold, the pixel is accepted as an edge
- If a pixel gradient value is below the lower threshold, then it is rejected.
- If the pixel gradient is between the two thresholds, then it will be accepted only if it is connected to a pixel that is above the upper threshold.
Code
#include "stdafx.h" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui.hpp" #include <stdlib.h> #include <stdio.h> using namespace cv; /// Global variables Mat src, src_gray; Mat dst, detected_edges; int edgeThresh = 1; int lowThreshold; int const max_lowThreshold = 100; int ratio = 3; int kernel_size = 3; char* window_name = "Edge Map"; /** * @function CannyThreshold * @brief Trackbar callback - Canny thresholds input with a ratio 1:3 */ void CannyThreshold(int, void*) { /// Reduce noise with a kernel 3x3 blur( src_gray, detected_edges, Size(3,3) ); /// Canny detector Canny( detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size ); /// Using Canny‘s output as a mask, we display our result dst = Scalar::all(0); src.copyTo( dst, detected_edges); imshow( window_name, dst ); } /** @function main */ int main( int argc, char** argv ) { /// Load an image src = imread( "img2.jpg" ); if( !src.data ) { return -1; } /// Create a matrix of the same type and size as src (for dst) dst.create( src.size(), src.type() ); /// Convert the image to grayscale cvtColor( src, src_gray, CV_BGR2GRAY ); /// Create a window namedWindow( window_name, CV_WINDOW_AUTOSIZE ); /// Create a Trackbar for user to enter threshold createTrackbar( "Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold ); /// Show the image CannyThreshold(0, 0); /// Wait until user exit program by pressing a key waitKey(0); return 0; }
程序中在进行canny边缘检测之前进行了,滤波 ~~
OpenCV Tutorials —— Canny Edge Detector
标签:style http io ar color os sp for strong
原文地址:http://www.cnblogs.com/sprint1989/p/4106723.html