码迷,mamicode.com
首页 > 其他好文 > 详细

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

时间:2014-11-19 18:20:50      阅读:142      评论:0      收藏:0      [点我收藏+]

标签:style   io   ar   color   sp   for   on   cti   bs   

Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographically ordered basis on the space of tensors, the matrix for $A\otimes B$ can be written in block form as follows: if $A=(a_{ij})$, then $$\bex A\otimes B=\sex{\ba{ccc} a_{11}B&\cdots&a_{1n}B\\ \vdots&\ddots&\vdots\\ a_{n1}B&\cdots&a_{nn}B \ea}. \eex$$

 

Solution. Let $A\in \scrL(\scrH)$, $B\in \scrL(\scrK)$, and $e_1,\cdots,e_n$; $f_1,\cdots,f_m$ be the orthonormal basis of $\scrH$ and $\scrK$ respectively. Then $$\beex \bea (A\otimes B)(e_i\otimes f_j) &=(Ae_i)\otimes (Bf_j)\\ &=\sum_k a_{ki}e_k\otimes \sum_l b_{lj}f_l\\ &=\sum_{k,l}a_{ki}b_{lj}e_k\otimes f_l\\ &=\sex{e_1\otimes f_1,\cdots,e_1\otimes f_n,\cdots,e_n\otimes f_n}\sex{\ba{c} a_{1i}b_{1j}\\ \vdots\\ a_{1i}b_{nj}\\ \vdots\\ a_{ni}b_{nj} \ea}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

标签:style   io   ar   color   sp   for   on   cti   bs   

原文地址:http://www.cnblogs.com/zhangzujin/p/4108480.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!