如下的一组数据: age group 1 23.0883 1 2
25.8344 1 3 29.4648 1 4 32.7858 2 5 33.6372 1 6 34.9350
1 7 35.2115 2 8 35.2115 2 9 35.2115 2 10 36.7803 1
如果想要对两组数据分别进行均值和求和,最简单的想法是按类做分组的子矩阵,但是太麻烦。 如果要得到下面的结果:group mean sd 1
34.5 5.6 2 32.3 4.2 ...今天学到的方法是:plyr包中的ddply函数如下:dt <-
data.frame(age=rchisq(20,10),group=sample(1:2,20,rep=T))
ddply(dt,~group,summarise,mean=mean(age),sd=sd(age))
~group是指可以使用levels(factor(data$group))函数得到的类别,age即为想得到的按组的处理目标。还有一种方法,今天来不及实验,先放到下面:
Here is the plyr one line variant using ddply: dt <-
data.frame(age=rchisq(20,10),group=sample(1:2,20,rep=T))
ddply(dt,~group,summarise,mean=mean(age),sd=sd(age)) Here is another one line
variant using new package data.table. dtf <-
data.frame(age=rchisq(100000,10),group=factor(sample(1:10,100000,rep=T))) dt
<- data.table(dt) dt[,list(mean=mean(age),sd=sd(age)),by=group] This one is
faster, though this is noticeable only on table with 100k rows. Timings on my
Macbook Pro with 2.53 Ghz Core 2 Duo processor and R 2.11.1:> system.time(aa
<- ddply(dtf,~group,summarise,mean=mean(age),sd=sd(age))) utilisateur
système écoulé 0.513 0.180 0.692 > system.time(aa
<- dt[,list(mean=mean(age),sd=sd(age)),by=group]) utilisateur système
écoulé 0.087 0.018 0.103 Further savings are possible if we
use setkey:> setkey(dt,group)>
system.time(dt[,list(mean=mean(age),sd=sd(age)),by=group]) utilisateur
système écoulé 0.040 0.007 0.048