码迷,mamicode.com
首页 > 其他好文 > 详细

hdu 2771(uva 12171) Sculpture bfs+离散化

时间:2014-11-19 18:45:56      阅读:269      评论:0      收藏:0      [点我收藏+]

标签:bfs   离散化   

题意:

给出一些边平行于坐标轴的长方体,这些长方体可能相交,也可能相互嵌套,这些长方体形成了一个雕塑,求这个雕塑的总体积和表面积。

题解:

最容易想到直接进行bfs或者dfs统计,但此题的麻烦之处在于求整个雕塑的外表面积和雕塑内部可能出现四个长方体所搭成的空心,空心不能计算到表面积中,但是计算总体积却要计入,于是直接bfs或者dfs不好处理,于是,可以想到直接统计整个雕塑外围的所有小方块,即可很方便地求出雕塑地表面积和体积(雕塑地总体积==整个空间地体积-外围想方块的体积),还有一点就是由于坐标范围达到1-1000, 整个空间的大小达到了1000*1000*1000 = 1e9, 直接bfs明显会超时,由于长方体的个数最大只有50个,于是可以对原坐标进行离散化,把每一维的坐标离散化后,整个空间的大小缩小到了100*100*100 = 1e6,于是这个问题就解决了。(详细参考代码,注释地很详细)。

代码:(参考了标程,很漂亮地代码)

#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int maxn = 50 + 5;
const int maxc = 1000 + 1;

int n;
int x0[maxn], y0[maxn], z0[maxn], x1[maxn], y1[maxn], z1[maxn];
int xs[maxn*2], ys[maxn*2], zs[maxn*2], nx, ny, nz;
int color[maxn*2][maxn*2][maxn*2];
int dx[] = {0, 0, 0, 0, -1, 1};
int dy[] = {0, 0, -1, 1, 0, 0};
int dz[] = {-1, 1, 0, 0, 0, 0};

struct Cell
{
    int x, y, z;
    Cell(int x = 0, int y = 0, int z = 0) : x(x), y(y), z(z) {}
    void setVis() const {
        color[x][y][z] = 2;
    }
    int volume() const {
        return (xs[x+1]-xs[x])*(ys[y+1]-ys[y])*(zs[z+1]-zs[z]);
    }
    Cell neighbor(int i) const {
        return Cell(x+dx[i], y+dy[i], z+dz[i]);
    }
    bool valid() const {
        return x>=0 && x<nx-1 && y>=0 && y<ny-1 && z>=0 && z<nz-1;
    }
    bool solid() const {
        return color[x][y][z] == 1;
    }
    int area(int i) const {
        if (dx[i] != 0) return (ys[y+1]-ys[y])*(zs[z+1]-zs[z]);
        else if(dy[i] != 0) return (xs[x+1]-xs[x])*(zs[z+1]-zs[z]);
        else return (xs[x+1]-xs[x])*(ys[y+1]-ys[y]);
    }
    bool getVis() const {
        return color[x][y][z] == 2;
    }
};

void discretize(int* x, int& n)     //对每一维进行离散化
{
    sort(x, x + n);
    n = (int)(unique(x, x+n) - x);
}
int ID(int* x, int n, int x0)   //找到原坐标离散化后的新坐标
{
    return (int)(lower_bound(x, x+n, x0) - x);
}
void floodfill(int& s, int& v)  //bfs 统计
{
    s = v = 0;
    Cell c; c.setVis();
    queue<Cell> Q; Q.push(c);
    
    while (!Q.empty())
    {
        Cell now = Q.front(); Q.pop();
        v += now.volume();      //统计雕塑外围的总体积
        for (int i = 0; i < 6; i++)
        {
            Cell nxt = now.neighbor(i);
            if (!nxt.valid()) continue;     //越界
            if (nxt.solid()) s += now.area(i);      //统计雕塑外围表面积
            else if(!nxt.getVis())
            {
                nxt.setVis();
                Q.push(nxt);
            }
        }
    }
    v = maxc*maxc*maxc - v;     //雕塑体积 == 整个空间的体积-雕塑外围体积
}
int main()
{
//    freopen("/Users/apple/Desktop/in.txt", "r", stdin);

    int t; scanf("%d", &t);
    
    while (t--)
    {
        scanf("%d", &n);
        nx = ny = nz = 2;
        xs[0] = ys[0] = zs[0] = 0;
        xs[1] = ys[1] = zs[1] = maxc;   //存入边界坐标
        for (int i = 0; i < n; i++)
        {
            scanf("%d%d%d", &x0[i], &y0[i], &z0[i]);
            scanf("%d%d%d", &x1[i], &y1[i], &z1[i]);
            x1[i] += x0[i], y1[i] += y0[i], z1[i] += z0[i];
            xs[nx++] = x0[i], xs[nx++] = x1[i];
            ys[ny++] = y0[i], ys[ny++] = y1[i];
            zs[nz++] = z0[i], zs[nz++] = z1[i];
        }
        discretize(xs, nx), discretize(ys, ny), discretize(zs, nz);
        memset(color, 0, sizeof(color));    //染色
        for (int i = 0; i < n; i++)
        {
            int X1 = ID(xs, nx, x0[i]), X2 = ID(xs, nx, x1[i]);
            int Y1 = ID(ys, ny, y0[i]), Y2 = ID(ys, ny, y1[i]);
            int Z1 = ID(zs, nz, z0[i]), Z2 = ID(zs, nz, z1[i]);
            for (int X = X1; X < X2; X++)       //对离散化后的坐标依次染色
            {
                for (int Y = Y1; Y < Y2; Y++)
                {
                    for (int Z = Z1; Z < Z2; Z++)
                    {
                        color[X][Y][Z] = 1;
                    }
                }
            }
        }
        int s, v;
        floodfill(s, v);
        printf("%d %d\n", s, v);
    }
    
    
    return 0;
}



hdu 2771(uva 12171) Sculpture bfs+离散化

标签:bfs   离散化   

原文地址:http://blog.csdn.net/myhelperisme/article/details/41283769

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!