码迷,mamicode.com
首页 > 其他好文 > 详细

[家里蹲大学数学杂志]第030期复旦大学2010年实分析竞赛试题参考解答

时间:2014-05-27 01:59:09      阅读:327      评论:0      收藏:0      [点我收藏+]

标签:style   c   class   ext   a   color   

1设 fbubuko.com,布布扣 是实直线 Rbubuko.com,布布扣 上的实函数, 若有常数 M>0bubuko.com,布布扣 使得对任何有限个两两不同的实数 xbubuko.com,布布扣1bubuko.com,布布扣,?,xbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣 都有 bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣nbubuko.com,布布扣i=1bubuko.com,布布扣f(xbubuko.com,布布扣ibubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣Mbubuko.com,布布扣 . 证明: {x; f(x)0}bubuko.com,布布扣 是至多可数的.

解答: 首先说明对 ? nNbubuko.com,布布扣 , Abubuko.com,布布扣nbubuko.com,布布扣={x; f(x)>1/n}bubuko.com,布布扣 是有限集 (个数不超过 n([M]+1)bubuko.com,布布扣 ). 若不然,

bubuko.com,布布扣xAbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣f(x)>1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣nAbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣1>1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣?n([M]+1)>M,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
这是一个矛盾. 其次, 同上论述, Bbubuko.com,布布扣nbubuko.com,布布扣={x; f(x)<?1/n}bubuko.com,布布扣 也是有限集. 于是
{x; f(x)0}=bubuko.com,布布扣bubuko.com,布布扣n=1bubuko.com,布布扣(Abubuko.com,布布扣nbubuko.com,布布扣Bbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
是至多可数的.

 

 

2设Ebubuko.com,布布扣 是实直线 Rbubuko.com,布布扣 上的 Lebesguebubuko.com,布布扣 可测集, 且 m(E)<bubuko.com,布布扣 . 证明:

limbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣ebubuko.com,布布扣inxbubuko.com,布布扣dx=0.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
这里 mbubuko.com,布布扣 表示 Lebesguebubuko.com,布布扣 测度.

解答: 由 m(E)<bubuko.com,布布扣 χbubuko.com,布布扣Ebubuko.com,布布扣Lbubuko.com,布布扣1bubuko.com,布布扣(R)bubuko.com,布布扣 , 而所证即为标准的 Riemann?Lebesguebubuko.com,布布扣 引理.

 

 

3设 fbubuko.com,布布扣 [0,1]bubuko.com,布布扣 上实的 Lebesguebubuko.com,布布扣 可测函数, 并且 Zbubuko.com,布布扣 是整数集. 证明:

limbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣|cosf(x)|bubuko.com,布布扣nbubuko.com,布布扣dx=m(fbubuko.com,布布扣?1bubuko.com,布布扣(πZ)).bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

证明: 注意到 |cosf(x)|bubuko.com,布布扣nbubuko.com,布布扣1bubuko.com,布布扣

|cosf(x)|bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣a.e.bubuko.com,布布扣χbubuko.com,布布扣fbubuko.com,布布扣?1bubuko.com,布布扣(πZ)bubuko.com,布布扣,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
我们由 Lebesguebubuko.com,布布扣 控制收敛定理得到结论.

 

 

4对 σbubuko.com,布布扣 -有限的测度空间 (X,Σ,μ)bubuko.com,布布扣 , 设 fbubuko.com,布布扣 Xbubuko.com,布布扣 上的非负可测函数, 记

μ(f>t)=μ{x; f(x)>t}.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
证明:
bubuko.com,布布扣Xbubuko.com,布布扣fdμ=bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣μ(f>t)dt.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

证明: 由 Fubinibubuko.com,布布扣 定理,

bubuko.com,布布扣Xbubuko.com,布布扣fdμ=bubuko.com,布布扣Xbubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣0bubuko.com,布布扣dtdμ=bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣Xbubuko.com,布布扣χbubuko.com,布布扣f>tbubuko.com,布布扣dμdt=bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣μ(f>t)dt.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
 

[家里蹲大学数学杂志]第030期复旦大学2010年实分析竞赛试题参考解答,布布扣,bubuko.com

[家里蹲大学数学杂志]第030期复旦大学2010年实分析竞赛试题参考解答

标签:style   c   class   ext   a   color   

原文地址:http://www.cnblogs.com/zhangzujin/p/3550241.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!