码迷,mamicode.com
首页 > 其他好文 > 详细

jrae源码解析(二)

时间:2014-11-20 18:15:16      阅读:226      评论:0      收藏:0      [点我收藏+]

标签:style   blog   io   ar   os   sp   java   for   strong   

本文细述上文引出的RAECost和SoftmaxCost两个类。

SoftmaxCost

我们已经知道,SoftmaxCost类在给定features和label的情况下(超参数给定),衡量给定权重($hidden\times catSize$)的误差值$cost$,并指出当前的权重梯度。看代码。

@Override
	public double valueAt(double[] x) 
	{
		if( !requiresEvaluation(x) )
			return value;
		int numDataItems = Features.columns;
		
		int[] requiredRows = ArraysHelper.makeArray(0, CatSize-2);
		ClassifierTheta Theta = new ClassifierTheta(x,FeatureLength,CatSize);
		DoubleMatrix Prediction = getPredictions (Theta, Features);
		
		double MeanTerm = 1.0 / (double) numDataItems;
		double Cost = getLoss (Prediction, Labels).sum() * MeanTerm; 
		double RegularisationTerm = 0.5 * Lambda * DoubleMatrixFunctions.SquaredNorm(Theta.W);
		
		DoubleMatrix Diff = Prediction.sub(Labels).muli(MeanTerm);
	    DoubleMatrix Delta = Features.mmul(Diff.transpose());
	
	    DoubleMatrix gradW = Delta.getColumns(requiredRows);
	    DoubleMatrix gradb = ((Diff.rowSums()).getRows(requiredRows));
	    
	    //Regularizing. Bias does not have one.
	    gradW = gradW.addi(Theta.W.mul(Lambda));
	    
	    Gradient = new ClassifierTheta(gradW,gradb);
	    value = Cost + RegularisationTerm;
	    gradient = Gradient.Theta;
		return value; 
	}

public DoubleMatrix getPredictions (ClassifierTheta Theta, DoubleMatrix Features)
    {
        int numDataItems = Features.columns;
        DoubleMatrix Input = ((Theta.W.transpose()).mmul(Features)).addColumnVector(Theta.b);
        Input = DoubleMatrix.concatVertically(Input, DoubleMatrix.zeros(1,numDataItems));
        return Activation.valueAt(Input);
    }

 是个典型的2层神经网络,没有隐层,首先根据features预测labels,预测结果用softmax归一化,然后根据误差反向传播算出权重梯度。

此处增加200字。

这个典型的2层神经网络,label为一列向量,目标label置1,其余为0;转换函数为softmax函数,输出为每个label的概率。

计算cost的函数为getLoss,假设目标label的预测输出为$p^*$,则每个样本的cost也即误差函数为:

$$cost=E(p^*)=-\log(p^*)$$

根据前述的神经网络后向传播算法,我们得到($j$为目标label时,否则为0):

$$\frac{\partial E}{\partial w_{ij}}=\frac{\partial E}{\partial p_j}\frac{\partial h_j}{\partial net_j}x_i=-\frac{1}{p_j}p_j(1-p_j)x_i=-(1-p_j)x_i=-(label_j-p_j)feature_i$$

因此我们便理解了下面代码的含义:

DoubleMatrix Delta = Features.mmul(Diff.transpose());

 

RAECost

先看实现代码:

@Override
	public double valueAt(double[] x)
	{
		if(!requiresEvaluation(x))
			return value;
		
		Theta Theta1 = new Theta(x,hiddenSize,visibleSize,dictionaryLength);
		FineTunableTheta Theta2 = new FineTunableTheta(x,hiddenSize,visibleSize,catSize,dictionaryLength);
		Theta2.setWe( Theta2.We.add(WeOrig) );
		
		final RAEClassificationCost classificationCost = new RAEClassificationCost(
				catSize, AlphaCat, Beta, dictionaryLength, hiddenSize, Lambda, f, Theta2);
		final RAEFeatureCost featureCost = new RAEFeatureCost(
				AlphaCat, Beta, dictionaryLength, hiddenSize, Lambda, f, WeOrig, Theta1);
	
		Parallel.For(DataCell, 
			new Parallel.Operation<LabeledDatum<Integer,Integer>>() {
				public void perform(int index, LabeledDatum<Integer,Integer> Data)
				{
					try {
						LabeledRAETree Tree = featureCost.Compute(Data);
						classificationCost.Compute(Data, Tree);					
					} catch (Exception e) {
						System.err.println(e.getMessage());
					}
				}
		});
		
		double costRAE = featureCost.getCost();
		double[] gradRAE = featureCost.getGradient().clone();
			
		double costSUP = classificationCost.getCost();
		gradient = classificationCost.getGradient();
			
		value = costRAE + costSUP;
		for(int i=0; i<gradRAE.length; i++)
			gradient[i] += gradRAE[i];
		
		System.gc();	System.gc();
		System.gc();	System.gc();
		System.gc();	System.gc();
		System.gc();	System.gc();
		
		return value;
	}

cost由两部分组成,featureCost和classificationCost。程序遍历每个样本,用featureCost.Compute(Data)生成一个递归树,同时累加cost和gradient,然后用classificationCost.Compute(Data, Tree)根据生成的树计算并累加cost和gradient。因此关键类为RAEFeatureCost和RAEClassificationCost。

RAEFeatureCost类在Compute函数中调用RAEPropagation的ForwardPropagate函数生成一棵树,然后调用BackPropagate计算梯度并累加。具体的算法过程,下一章分解。

jrae源码解析(二)

标签:style   blog   io   ar   os   sp   java   for   strong   

原文地址:http://www.cnblogs.com/wuseguang/p/4110351.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!