码迷,mamicode.com
首页 > 其他好文 > 详细

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

时间:2014-11-21 09:09:37      阅读:225      评论:0      收藏:0      [点我收藏+]

标签:style   io   color   sp   on   bs   ad   amp   ef   

Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.

 

Solution. $$\beex \bea &\quad \sef{x_1\wedge\cdots \wedge x_k,y_1\wedge \cdots \wedge y_k}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_\sigma \ve_\tau \sef{x_{\sigma(1)},y_{\tau(1)}} \cdots \sef{x_{\sigma(k)},y_{\tau(k)}}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_{\sigma^{-1}} \ve_\tau \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}} \\ &=\frac{1}{k!} \sum_{\sigma}\sez{ \sum_{\tau}\ve_{\tau\sigma^{-1}} \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}}} \\ &=\frac{1}{k!} \sum_{\sigma}\det \sex{\sef{x_i,y_j}}\\ &=\det \sex{\sef{x_i,y_j}}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

标签:style   io   color   sp   on   bs   ad   amp   ef   

原文地址:http://www.cnblogs.com/zhangzujin/p/4112003.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!