Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1120 Accepted Submission(s): 364
Problem Description
Bob is very interested in the data structure of a tree. A tree is a directed graph in which a special node is singled out, called the "root" of the tree, and there is a unique path from the root to each of the other nodes.
Bob intends to color all the nodes of a tree with a pen. A tree has N nodes, these nodes are numbered 1, 2, ..., N. Suppose coloring a node takes 1 unit of time, and after finishing coloring one node, he is allowed to color another. Additionally, he is allowed to color a node only when its father node has been colored. Obviously, Bob is only allowed to color the root in the first try.
Each node has a “coloring cost factor”, Ci. The coloring cost of each node depends both on Ci and the time at which Bob finishes the coloring of this node. At the beginning, the time is set to 0. If the finishing time of coloring node i is Fi, then the coloring cost of node i is Ci * Fi.
For example, a tree with five nodes is shown in Figure-1. The coloring cost factors of each node are 1, 2, 1, 2 and 4. Bob can color the tree in the order 1, 3, 5, 2, 4, with the minimum total coloring cost of 33.
Given a tree and the coloring cost factor of each node, please help Bob to find the minimum possible total coloring cost for coloring all the nodes.
Input
The input consists of several test cases. The first line of each case contains two integers N and R (1 <= N <= 1000, 1 <= R <= N), where N is the number of nodes in the tree and R is the node number of the root node. The second line contains N integers, the i-th of which is Ci (1 <= Ci <= 500), the coloring cost factor of node i. Each of the next N-1 lines contains two space-separated node numbers V1 and V2, which are the endpoints of an edge in the tree, denoting that V1 is the father node of V2. No edge will be listed twice, and all edges will be listed.
A test case of N = 0 and R = 0 indicates the end of input, and should not be processed.
Output
For each test case, output a line containing the minimum total coloring cost required for Bob to color all the nodes.
Sample Input
5 1
1 2 1 2 4
1 2
1 3
2 4
3 5
0 0
Sample Output
33
题意:
一棵树,结点树为n,根结点为r。每个结点都有一个权值ci,开始时间为0,每染色一个结点需要耗时1,每个结点的染色代价为ci*ti(ti为当前的时间),每个结点只有在父结点已经被染色的条件下才能被染色。求染完整棵树需要花费的最小代价。
题解:
结论证明来源:http://hi.baidu.com/cheezer94/item/7b4a15214b2050022b0f1c0a
结论1:对于一个非根结点,它具有非根结点的最大权值,那么访问完它的父亲后就要立即访问它才能使得代价最小。
处理过程:
1)建立结构体node,结构体数组node[i]表示i结点的状态,node[i].c=ci为总权值,node[i].w=ci为当前权值,node[i].t=1为经过这个结点需要的耗时(也可以理解为这个结点包含几个合并的结点),node[i].pre为父结点
2)找到一个最大权值非根结点,将其m与其父亲p合并形成一个新的结点,新结点还是原来p的位置,这个新结点的子结点为m和p的子结点;答案ans+=node[m].c*node[p].t,表示经过父节点p后,需要经历node[p].t时间才到达m,所以讲m同p合并后,总代价要加上这段路径的代价;新结点的情况node[p].c+=node[m].c,node[p].t+=node[m].t,node[p].w=1.0*node[p].c/node[p].t(新结点权值变成算术平均值,因为到这个结点的代价被平分分给t个结点)。
3)重复2)直到结点只有一个为止。
4)ans+=∑ci,因为本身染色需要耗时1,也就要支付代价ci*1.
#include<stdio.h> #include<vector> #define M 1010 using namespace std; struct Node { double w; //合并后的节点的平均权值 int t; //合并之后的该节点所包含的步数 int c; //合并之后的该节点的总权值 int pre; //该节点的父节点 }; int n,r,a,b,sum; Node node[M]; int find_max(int n, int r) //寻找节点之后的最大节点 { double max = -1; int p; for(int i=1;i<=n;i++) { if(i==r) continue; if(node[i].w>max) { max = node[i].w; p = i; } } return p; } int main() { while(scanf("%d %d", &n, &r), n|r) { sum = 0; for(int i=1;i<=n;i++) { scanf("%d", &node[i].c); node[i].w = node[i].c; node[i].t = 1; sum += node[i].c; //这边先保存一步走完全部节点的总权值,然后再去计算剩下的权值 } for(int i=0;i<n-1;i++) { scanf("%d %d",&a,&b); node[b].pre = a; } for(int i=1;i<n;i++) { int m = find_max(n, r); node[m].w = 0; //把找到的最大权值节点的权值变为0,以免影响后面求最大节点的搜索 int p = node[m].pre; sum += node[m].c*node[c].t; //表示经过父节点p后,需要经历node[p].t时间才到达m,所以讲m同p合并后,总代价要加上这段路径的代价; for(int j=1;j<=n;j++) //将所有指向m节点的子节点的父节点该层p节点 { if(node[j].pre==m) { node[j].pre = p; } } node[p].t += node[m].t; //对总步数和总时间相加 node[p].c += node[m].c; node[p].w = 1.0*node[p].c/node[p].t; //求平均的权值 } printf("%d\n", sum); } return 0; }
原文地址:http://blog.csdn.net/kaitangshouljz/article/details/41362629