码迷,mamicode.com
首页 > 其他好文 > 详细

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.8

时间:2014-11-22 17:11:26      阅读:143      评论:0      收藏:0      [点我收藏+]

标签:style   io   color   sp   for   on   bs   ad   ef   

Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B). \eex$$ (The corresponding relation for determinants is an easy equality.)

 

Solution. Let $$\bex A=\sex{\ba{cc} \al_1\\ \vdots\\ \al_n \ea},\quad B=\sex{\beta_1,\cdots,\beta_n}. \eex$$ Then $$\bex AB=\sex{\sef{\al_i,\beta_j}}. \eex$$ By Exercise I.5.7, $$\beex \bea |\per (AB)|^2 &=\sev{\per (\sef{\al_i,\beta_j})}^2\\ &\leq \per (\sef{\al_i,\al_j})\cdot \per (\sef{\beta_i,\beta_j})\\ &=\per(AA^*)\cdot \per(B^*B). \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.8

标签:style   io   color   sp   for   on   bs   ad   ef   

原文地址:http://www.cnblogs.com/zhangzujin/p/4115281.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!