码迷,mamicode.com
首页 > 其他好文 > 详细

Sqrt(x)

时间:2014-11-24 16:48:43      阅读:229      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   io   ar   color   os   sp   on   

Implement int sqrt(int x).

Compute and return the square root of x.

这里给出两种实现方法:一是二分搜索,二是牛顿迭代法。

1. 二分搜索

对于一个非负数n,它的平方根不会小于大于(n/2+1)。在[0, n/2+1]这个范围内可以进行二分搜索,求出n的平方根。

C++实现代码:

#include<iostream>
using namespace std;

class Solution {
public:
    int sqrt(int x) {
        if(x==0||x==1)
            return x;
        long long mid;
        long long left=1;
        long long right=x/2+1;
        while(left<=right)
        {
            mid=(left+right)/2;
            if(mid*mid==x)
                return mid;
            else if(mid*mid<x)
                left=mid+1;
            else
                right=mid-1;
        }
        return right;
    }
};

int main()
{
    Solution s;
    cout<<s.sqrt(2147483647)<<endl;
}

注意:要将mid声明为long long,防止mid*mid溢出。

2. 牛顿迭代法 参考:http://www.cnblogs.com/AnnieKim/archive/2013/04/18/3028607.html

bubuko.com,布布扣

   为了方便理解,就先以本题为例:

   计算x2 = n的解,令f(x)=x2-n,相当于求解f(x)=0的解,如左图所示。

   首先取x0,如果x0不是解,做一个经过(x0,f(x0))这个点的切线,与x轴的交点为x1

   同样的道理,如果x1不是解,做一个经过(x1,f(x1))这个点的切线,与x轴的交点为x2

   以此类推。

   以这样的方式得到的xi会无限趋近于f(x)=0的解。

   判断xi是否是f(x)=0的解有两种方法:

   一是直接计算f(xi)的值判断是否为0,二是判断前后两个解xi和xi-1是否无限接近。

 

经过(xi, f(xi))这个点的切线方程为f(x) = f(xi) + f’(xi)(x - xi),其中f‘(x)为f(x)的导数,本题中为2x。令切线方程等于0,即可求出xi+1=xi - f(xi) / f‘(xi)。

继续化简,xi+1=xi - (xi- n) / (2xi) = xi - xi / 2 + n / (2xi) = xi / 2 + n / 2xi = (xi + n/xi) / 2。

有了迭代公式,程序就好写了。关于牛顿迭代法,可以参考wikipedia以及百度百科

int sqrt(int x) {
    if (x == 0) return 0;
    double last = 0;
    double res = 1;
    while (res != last)
    {
        last = res;
        res = (res + x / res) / 2;
    }
    return int(res);
}

 

Sqrt(x)

标签:style   blog   http   io   ar   color   os   sp   on   

原文地址:http://www.cnblogs.com/wuchanming/p/4118894.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!