标签:style http io ar color os sp for strong
OpenCV 的视频操作都与 VideoCapture 相关
If this argument is an integer then you will bind the class to a camera, a device. The number passed here is the ID of the device, assigned by the operating system.
If you have a single camera attached to your system its ID will probably be zero and further ones increasing from there.
If the parameter passed to these is a string it will refer to a video file, and the string points to the location and name of the file.
1,通过构造函数或者 open 来打开视频流
2,通过 isOpen 判断是否打开成功
3,通过 >> 将frame信息读入Mat 中
4,empty 来检测是否完结
5,获取视频其他信息,用get
Size refS = Size((int) captRefrnc.get(CV_CAP_PROP_FRAME_WIDTH), (int) captRefrnc.get(CV_CAP_PROP_FRAME_HEIGHT)), cout << "Reference frame resolution: Width=" << refS.width << " Height=" << refS.height << " of nr#: " << captRefrnc.get(CV_CAP_PROP_FRAME_COUNT) << endl;set 设置信息:
captRefrnc.set(CV_CAP_PROP_POS_MSEC, 1.2); // go to the 1.2 second in the video captRefrnc.set(CV_CAP_PROP_POS_FRAMES, 10); // go to the 10th frame of the video
PSNR (aka Peak signal-to-noise ratio). The simplest definition of this starts out from the mean squad error. Let there be two images: I1 and I2; with a two dimensional size i and j, composed of c number of channels.
Then the PSNR is expressed as:
Here the is the maximum valid value for a pixel.
其中两像素相减会发生除数为零的情况,需要在程序中区分对待
程序的目的是比较原始视频和压缩视频每帧图像的相似度(信息损失度)
Code
#include "stdafx.h" #include <iostream> // for standard I/O #include <string> // for strings #include <iomanip> // for controlling float print precision #include <sstream> // string to number conversion #include <opencv2/imgproc/imgproc.hpp> // Gaussian Blur #include <opencv2/core/core.hpp> // Basic OpenCV structures (cv::Mat, Scalar) #include <opencv2/highgui/highgui.hpp> // OpenCV window I/O using namespace std; using namespace cv; double getPSNR ( const Mat& I1, const Mat& I2); Scalar getMSSIM( const Mat& I1, const Mat& I2); void help() { cout << "\n--------------------------------------------------------------------------" << endl << "This program shows how to read a video file with OpenCV. In addition, it tests the" << " similarity of two input videos first with PSNR, and for the frames below a PSNR " << endl << "trigger value, also with MSSIM."<< endl << "Usage:" << endl << "./video-source referenceVideo useCaseTestVideo PSNR_Trigger_Value Wait_Between_Frames " << endl << "--------------------------------------------------------------------------" << endl << endl; } int main(int argc, char *argv[], char *window_name) { help(); /* if (argc != 5) { cout << "Not enough parameters" << endl; return -1; }*/ stringstream conv; const string sourceReference = "video/Megamind.avi",sourceCompareWith = "video/Megamind_bug.avi"; int psnrTriggerValue, delay; conv << "35" << endl << "10"; // put in the strings conv >> psnrTriggerValue >> delay;// take out the numbers char c; int frameNum = -1; // Frame counter VideoCapture captRefrnc(sourceReference), // 通过构造函数打开视频流 captUndTst(sourceCompareWith); if ( !captRefrnc.isOpened()) { cout << "Could not open reference " << sourceReference << endl; return -1; } if( !captUndTst.isOpened()) { cout << "Could not open case test " << sourceCompareWith << endl; return -1; } Size refS = Size((int) captRefrnc.get(CV_CAP_PROP_FRAME_WIDTH), (int) captRefrnc.get(CV_CAP_PROP_FRAME_HEIGHT)), uTSi = Size((int) captUndTst.get(CV_CAP_PROP_FRAME_WIDTH), (int) captUndTst.get(CV_CAP_PROP_FRAME_HEIGHT)); if (refS != uTSi) { cout << "Inputs have different size!!! Closing." << endl; return -1; } const char* WIN_UT = "Under Test"; const char* WIN_RF = "Reference"; // Windows namedWindow(WIN_RF, CV_WINDOW_AUTOSIZE ); namedWindow(WIN_UT, CV_WINDOW_AUTOSIZE ); cvMoveWindow(WIN_RF, 400 , 0); //750, 2 (bernat =0) cvMoveWindow(WIN_UT, refS.width, 0); //1500, 2 cout << "Reference frame resolution: Width=" << refS.width << " Height=" << refS.height << " of nr#: " << captRefrnc.get(CV_CAP_PROP_FRAME_COUNT) << endl; cout << "PSNR trigger value " << setiosflags(ios::fixed) << setprecision(3) << psnrTriggerValue << endl; Mat frameReference, frameUnderTest; double psnrV; Scalar mssimV; while( true) //Show the image captured in the window and repeat { captRefrnc >> frameReference; captUndTst >> frameUnderTest; if( frameReference.empty() || frameUnderTest.empty()) { cout << " < < < Game over! > > > "; break; } ++frameNum; cout <<"Frame:" << frameNum <<"# "; ///////////////////////////////// PSNR //////////////////////////////////////////////////// psnrV = getPSNR(frameReference,frameUnderTest); //get PSNR cout << setiosflags(ios::fixed) << setprecision(3) << psnrV << "dB"; //////////////////////////////////// MSSIM ///////////////////////////////////////////////// if (psnrV < psnrTriggerValue && psnrV) { mssimV = getMSSIM(frameReference,frameUnderTest); cout << " MSSIM: " << " R " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[2] * 100 << "%" << " G " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[1] * 100 << "%" << " B " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[0] * 100 << "%"; } cout << endl; ////////////////////////////////// Show Image ///////////////////////////////////////////// imshow( WIN_RF, frameReference); imshow( WIN_UT, frameUnderTest); c = cvWaitKey(delay); if (c == 27) break; } return 0; } double getPSNR(const Mat& I1, const Mat& I2) { Mat s1; absdiff(I1, I2, s1); // |I1 - I2| s1.convertTo(s1, CV_32F); // cannot make a square on 8 bits s1 = s1.mul(s1); // |I1 - I2|^2 Scalar s = sum(s1); // sum elements per channel double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels if( sse <= 1e-10) // for small values return zero return 0; else { double mse =sse /(double)(I1.channels() * I1.total()); double psnr = 10.0*log10((255*255)/mse); return psnr; } } Scalar getMSSIM( const Mat& i1, const Mat& i2) { const double C1 = 6.5025, C2 = 58.5225; /***************************** INITS **********************************/ int d = CV_32F; Mat I1, I2; i1.convertTo(I1, d); // cannot calculate on one byte large values i2.convertTo(I2, d); Mat I2_2 = I2.mul(I2); // I2^2 Mat I1_2 = I1.mul(I1); // I1^2 Mat I1_I2 = I1.mul(I2); // I1 * I2 /*************************** END INITS **********************************/ Mat mu1, mu2; // PRELIMINARY COMPUTING GaussianBlur(I1, mu1, Size(11, 11), 1.5); GaussianBlur(I2, mu2, Size(11, 11), 1.5); Mat mu1_2 = mu1.mul(mu1); Mat mu2_2 = mu2.mul(mu2); Mat mu1_mu2 = mu1.mul(mu2); Mat sigma1_2, sigma2_2, sigma12; GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5); sigma1_2 -= mu1_2; GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5); sigma2_2 -= mu2_2; GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5); sigma12 -= mu1_mu2; ///////////////////////////////// FORMULA //////////////////////////////// Mat t1, t2, t3; t1 = 2 * mu1_mu2 + C1; t2 = 2 * sigma12 + C2; t3 = t1.mul(t2); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2)) t1 = mu1_2 + mu2_2 + C1; t2 = sigma1_2 + sigma2_2 + C2; t1 = t1.mul(t2); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2)) Mat ssim_map; divide(t3, t1, ssim_map); // ssim_map = t3./t1; Scalar mssim = mean( ssim_map ); // mssim = average of ssim map return mssim; }
OpenCV Tutorials —— Video Input with OpenCV and similarity measurement
标签:style http io ar color os sp for strong
原文地址:http://www.cnblogs.com/sprint1989/p/4118996.html