码迷,mamicode.com
首页 > 其他好文 > 详细

[再寄小读者之数学篇](2014-11-24 积分中值定理)

时间:2014-11-25 12:09:05      阅读:90      评论:0      收藏:0      [点我收藏+]

标签:style   color   sp   on   2014   bs   size   nbsp   函数   

积分第一中值定理. 若 $f$ 在 $[a,b]$ 上连续, 则 $$\bex \exists\ \xi\in (a,b),\st \int_a^b f(x)\rd x=f(\xi)(b-a). \eex$$ 推广的积分第一中值定理. 若 $f,g$ 都在 $[a,b]$ 上连续, 且 $g$ 在 $[a,b]$ 上不变号, 则 $$\bex \exists\ \xi\in [a,b],\st \int_a^b f(x)g(x)\rd x =f(\xi)\int_a^b g(x)\rd x. \eex$$ 积分第二中值定理. 设 $f$ 在 $[a,b]$ 上可积.

(1). 若函数 $g$ 在 $[a,b]$ 上减, 且 $g(x)\geq 0$, 则 $$\bex \exists\ \xi\in [a,b],\st \int_a^b f(x)g(x)\rd x =g(a)\int_a^\xi f(x)\rd x. \eex$$ (2). 若函数 $g$ 在 $[a,b]$ 上增, 且 $g(x)\geq 0$, 则 $$\bex \exists\ \eta\in [a,b],\st \int_a^b f(x)g(x)\rd x =g(b)\int_\eta^b f(x)\rd x. \eex$$ (3). 若函数 $g$ 为单调函数, 则 $$\bex \exists\ \xi\in [a,b],\st \int_a^b f(x)g(x)\rd x =g(a)\int_a^\xi f(x)\rd x +g(b)\int_\xi^b f(x)\rd x. \eex$$ 

[再寄小读者之数学篇](2014-11-24 积分中值定理)

标签:style   color   sp   on   2014   bs   size   nbsp   函数   

原文地址:http://www.cnblogs.com/zhangzujin/p/4120373.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!