storm的事务主要用于对数据准确性要求非常高的环境中,尤其是在计算交易金额或笔数,数据库同步的场景中。
storm 事务逻辑是挺复杂的,而且坦白讲,代码写的挺烂的。 JStorm下一步将重新设计基于Meta 1 和Meta3 的事务模型,让使用者更简便,代码更清晰。
一个基本的例子
你可以通过使用TransactionalTopologyBuilder来创建transactional topology. 下面就是一个transactional topology的定义, 它的作用是计算输入流里面的tuple的个数。这段代码来自storm-starter里面的TransactionalGlobalCount。
另:TransactionalTopologyBuilder已经过时,被Trident代替!!
Storm高级原语(一) — Transactional topology
Transactional topology是一个0.9版本中被弃用的原语,取而代之的是trident框架。(关于trident请参考:《Storm高级原语(三) — Trident topology》 )
Storm通过保证每个tuple至少被处理一次来提供可靠的数据处理。关于这一点最常被问到的问题就是“既然tuple可能会被再次发送(replay), 那么我们怎么在storm上面做统计个数之类的事情呢?storm有可能会重复计数(overcount)吧?”
Storm 0.7.0引入了Transactional Topology, 它可以保证每个tuple”被且仅被处理一次”(exactly once), 这样你就可以实现一种非常准确、易于扩展、并且高度容错方式来实现计数类应用。
跟Distributed RPC类似,transactional topology其实不能算是storm的一个特性,它其实是用storm的底层原语spout, bolt, topology, stream等等抽象出来的一个特性。
这篇文章解释了事务性topology是怎样的一种抽象,怎样使用它的api,同时也讨论了有关它实现的一些细节。
一些概念
本节内容我们将一步步地建立transactional topology的抽象。首先我们提出一种最简单的抽象方式, 然后一步步的完善改进,最后介绍storm代码里面所使用的抽象方式。
第一个设计:一次只处理一个tuple
事务性topology背后的核心思想是要在处理数据时提供强顺序性。这种强顺序性最简单的表现、同时也是我们将要学习的第一个设计就是:我们每次只处理一个tuple, 除非这个tuple处理成功,否则我们不去处理下一个tuple。
每一个tuple都跟一个transaction id相关联。如果一个tuple处理失败了,然后需要重新发送,那么该tuple会使用完全相同的transaction id被发送。这里说的trasaction id其实就是一个数字, 来 1个tuple,它就递增1。所以第一个tuple的transaction id是1, 第二个tuple的transaction id是2,等等。
tuple的强顺序性使得我们即使在tuple重发的时候也能够实现“一次而且只有一次”的语义。 让我们看个例子:
比如你想统计一个stream里面tuple的总数。那么为了保证统计数字的准确性,你在数据库里面不但要保存tuple的个数, 还要保存这个数字所对应的最新的transaction id。 当你的代码中要更新数据库里tuple个数的时候,只有当新的transaction id跟数据库里面保存的transaction id不一样的时候才去更新。考虑两种情况:
1、数据库里面的transaction id跟当前的transaction id不一样: 由于transaction的强顺序性,我们可以确定当前的tuple肯定没有统计在数据库里面。所以我们可以安全地递增这个数字,并且更新这个transaction id。
2、数据库里面的transaction id跟当前的transaction id一样: 那么我们知道当前tuple已经统计在数据库里面了,那么可以忽略这个更新。这个tuple肯定之前在更新了数据库之后,反馈给storm的时候失败了(ack超时之类的)。
上面这个逻辑以及事务的强顺序性保证数据库里面tuple的个数(count)即使在tuple被重发的时候也是准确的。这个主意(保存count + transaction-id)是Kafka的开发者在这个设计文档里面(http://incubator.apache.org/kafka/07/design.html)提出来的。
更进一步来说,这个topology可以在一个事务里面更新很多不同的状态,并且可以到达“一次而且只有一次”的逻辑。如果有任何失败(failure),那么已经成功的更新你再去更新它会忽略,失败的更新你去再次更新它则会接受。比如,如果你在处理一个推文(tweet)流,你可以更新每个url下的推文(tweet)数, 同时更新每个domain下的推文(tweet)数。
这个“每次只处理一个tuple”的设计有一个很大的问题, 那就是你必须要等待一个tuple完全处理成功之后才能去处理下一个tuple,此时效率是非常低下的。这种设计需要大量的数据库调用(对每个tuple至少一次),而且这个设计也没有利用到storm的并行计算能力, 所以它的可扩展能力是非常差的。
第二个设计:一次处理一批tuple
与每次只处理一个tuple的简单方案相比, 一个更好的方案是每个transaction里面处理一批tuple。所以如果你在做一个计数应用, 那么你每次更新到总数里面的是整个batch里面的tuple数量。如果这个batch失败了,那么你重新发送这整个batch。相应地, 我们不是给每个tuple一个transaction id而是给整个batch分配一个transaction id,batch与batch之间的处理是强顺序性的, 而batch内部是可以并行的。下面这个是设计图:
所以如果你每个batch处理1000个tuple的话, 那么你的应用将会比第一种设计少1000倍的数据库调用。此外,它利用了storm的并行计算能力(每个batch内部可以并行)。
虽然这个设计比第一个设计好多了, 它仍然不是一个完美的方案。topology里面的worker会花费大量的时间等待计算的其它部分完成,比如看下面的这个计算。
在bolt 1完成它的处理部分之后, 它需要等待剩下的bolt去处理当前batch, 直到发射下一个batch。
第三个设计:Storm采用的设计
一个我们需要意识到的比较重要的问题是,在处理一批tuples的时候,不是所有的工作都需要强顺序性的。比如,当做一个全局计数应用的时候, 整个计算可以分为两个部分。
1、计算一个batch的数量(称 局部数量)。
2、把这个batch对应的局部数量更新到数据库里面去。
其中第二步在多个batch之间需要保证强的顺序性, 但是第一步并不需要, 所以我们可以把第一步并行化。所以当batch 1在更新它的个数进入数据库的时候,batch 2~10可以开始计算它们的局部数量了。
Storm通过把一个batch的计算分成两个阶段来实现上面所说的原理:
1、processing阶段: 这个阶段很多batch可以并行计算。
2、commit阶段: 这个阶段各个batch之间需要有强顺序性的保证。所以第二个batch必须要在第一个batch成功提交之后才能提交。
这两个阶段合起来称为一个transaction。在一个给定的时刻,可以有很多batch处于processing阶段,但是只有一个batch可以处在commit阶段。如果一个batch在processing或者commit阶段有任何错误, 那么整个transaction需要被重新进行。
设计细节
当使用Transactional Topologies的时候, storm为你做下面这些事情:
1) 管理状态:Storm把所有实现Transactional Topologies所必须的状态保存在zookeeper里面,这包括当前的transaction id以及定义每个batch的一些元数据。
2) 协调事务:Storm帮你管理所有事情,以便决定在某个个时间点,哪些事务处于proccessing阶段,那个事务正在committing。
3) 错误检测:Storm利用acking框架来高效地检测什么时候一个batch被成功处理了,被成功提交了,或者失败了。Storm然后会相应地replay对应的batch。你不需要自己手动做任何acking或者anchoring — storm帮你搞定所有事情。
4) 内置的批处理API:Storm在普通bolt之上包装了一层API来提供对tuple的批处理支持。Storm管理所有的协调工作,包括决定什么时候一个bolt接收到一个特定transaction的所有tuple。Storm同时也会自动清理每个transaction所产生的中间数据。
最后,需要注意的一点是Transactional Topologies需要一个可以完全重发(replay)一个特定batch的消息的队列系统(Message Queue)。Kestrel之类的技术做不到这一点,而Apache的Kafka对于这个需求来说是正合适的,同时storm-contrib里面的storm-kafka为Kafka实现了一个事务性的spout。
一个基本的例子
你可以通过使用TransactionalTopologyBuilder来创建transactional topology. 下面就是一个transactional topology的定义, 它的作用是计算输入流里面的tuple的个数。这段代码来自storm-starter里面的TransactionalGlobalCount。
1
2
3
4
5
6
|
MemoryTransactionalSpout spout = new MemoryTransactionalSpout(DATA, new Fields( "word" ), PARTITION_TAKE_PER_BATCH);
TransactionalTopologyBuilder builder = new TransactionalTopologyBuilder( "global-count" , "spout" , spout, 3 );
builder.setBolt( "partial-count" , new BatchCount(), 5 )
.shuffleGrouping( "spout" );
builder.setBolt( "sum" , new UpdateGlobalCount())
.globalGrouping( "partial-count" );
|
TransactionalTopologyBuilder构造器中接受如下的参数:
- 一个transaction topology的id
- spout在整个topology里面的id。
- 一个transactional spout。
- 一个可选的这个transactional spout的并行度。
topology的id是用来在zookeeper里面保存这个topology的当前进度状态的,所以如果你重启这个topology, 它可以接着前面的进度继续执行。
一个transaction topology里面有一个唯一的TransactionalSpout, 这个spout是通过TransactionalTopologyBuilder的构造函数来指定的。在这个例子里面,MemoryTransactionalSpout被用来从一个内存变量里面读取数据(DATA)。第二个参数指定spout发送的tuple的字段, 第三个参数指定每个batch的最大tuple数量。关于如何自定义TransactionalSpout我们会在后面介绍。
现在说说 bolts。这个topology并行地计算tuple的总数量。第一个bolt:BatchBolt,随机地把输入tuple分给各个task,然后各个task各自统计局部数量。第二个bolt:UpdateGlobalCount, 用全局grouping来汇总这个batch中tuple的数量,然后再更新到数据库里面的全局数量。
下面是BatchCount的定义:
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
public static class BatchCount extends BaseBatchBolt {
Object _id;
BatchOutputCollector _collector;
int _count = 0 ;
@Override
public void prepare(Map conf, TopologyContext context, BatchOutputCollector collector, Object id) {
_collector = collector;
_id = id;
}
@Override
public void execute(Tuple tuple) {
_count++;
}
@Override
public void finishBatch() {
_collector.emit( new Values(_id, _count));
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare( new Fields( "id" , "count" ));
}
}
|
storm会为每个正在处理的batch创建一个BatchCount对象,这个BatchCount是运行在BatchBoltExecutor里面的。而BatchBoltExecutor负责创建以及清理这个对象的实例。
BatchCount对象的prepare方法接收如下参数:
- Storm config
- Topology context
- Output collector
- 这个batch的id (txid),在Transactional Topology中, 这个id则是一个TransactionAttempt对象。
这个batch bolt的抽象在DRPC里面也可以用, 只是txid的类型不一样而已。实际上,BatchBolt可以接收一个txid类型的参数,所以如果你只是想在transactioinal topology里面使用这个BatchBolt,你可以去继承BaseTransactionalBolt类,如下定义:
public abstract class BaseTransactionalBolt extends BaseBatchBolt {
}
在transaction topology里面发射的所有的tuple都必须以TransactionAttempt作为第一个field, 然后storm可以根据这个field来判断哪些tuple属于一个batch。所以你在发射tuple的时候需要满足这个条件。
TransactionAttempt包含两个值: 一个transaction id,一个attempt id。transaction id的作用就是我们上面介绍的对于每个batch是唯一的,而且不管这个batch 被replay多少次都是一样的。attempt id是对于每个batch唯一的一个id, 但是对于同一个batch,它replay之后的attempt id跟replay之前就不一样了, 我们可以把attempt id理解成replay-times, storm利用这个id来区别一个batch发射的tuple的不同版本。
transaction id对于每个batch加一, 所以第一个batch的transaction id是”1″, 第二个batch是”2″,依次类推。
每收到一个batch中的tuple,execute方法便被调用一次。每次当该方法被调用时,你应该把这个batch里面的状态保持在一个本地变量里面。对于这个例子来说, 它在execute方法里面递增tuple的个数。
最后, 当这个bolt接收到某个batch的所有的tuple之后, finishBatch方法会被调用。这个例子里面的BatchCount类会在这个时候发射它的局部数量到它的输出流里面去。
下面是UpdateGlobalCount类的定义:
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
public static class UpdateGlobalCount extends BaseTransactionalBolt implements ICommitter {
TransactionAttempt _attempt;
BatchOutputCollector _collector;
int _sum = 0 ;
@Override
public void prepare(Map conf, TopologyContext context, BatchOutputCollector collector, TransactionAttempt attempt) {
_collector = collector;
_attempt = attempt;
}
@Override
public void execute(Tuple tuple) {
_sum+=tuple.getInteger( 1 );
}
@Override
public void finishBatch() {
Value val = DATABASE.get(GLOBAL_COUNT_KEY);
Value newval;
if (val == null || !val.txid.equals(_attempt.getTransactionId())) {
newval = new Value();
newval.txid = _attempt.getTransactionId();
if (val== null ) {
newval.count = _sum;
} else {
newval.count = _sum + val.count;
}
DATABASE.put(GLOBAL_COUNT_KEY, newval);
} else {
newval = val;
}
_collector.emit( new Values(_attempt, newval.count));
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare( new Fields( "id" , "sum" ));
}
}
|
UpdateGlobalCount是Transactional Topologies相关的类,所以它继承自BaseTransactionalBolt。在execute方法里面, UpdateGlobalCount累积这个batch的计数, 比较有趣的是finishBatch方法。
首先, 注意这个bolt实现了ICommitter接口,这告诉storm要在这个事务的commit阶段调用finishBatch方法,所以对于finishBatch的调用会保证强顺序性(顺序就是transaction id的升序),另一方面execute方法在processing或者commit阶段都可以执行。另外一种把bolt标识为commiter的方法是调用TransactionalTopologyBuilder的setCommiterBolt来添加Bolt(而不是setBolt)。
UpdateGlobalCount里面finishBatch方法的逻辑是首先从数据库中获取当前的值,并且把数据库里面的transaction id与当前这个batch的transaction id进行比较。如果他们一样, 那么忽略这个batch。否则把这个batch的结果加到总结果里面去,并且更新数据库。
关于transactional topology的更深入的例子可以看看storm-starter里面的TransactionalWords类, 这个例子会在一个事务里面更新多个数据库
Transactional Topology API
这一节介绍Transaction topology API中的几个部分。
Bolts
在一个transactional topology里面可以有三种类型的bolt:
1、BasicBolt:这个bolt不跟batch的tuples打交道,它只基于单个tuple的输入来发送新的tuple。
2、BatchBolt:这个bolt处理batch中的tuples,对于每一个tuple调用execute方法,而在整个batch处理完成的时候调用finishBatch方法。
3、被标记成Committer的BatchBolt:和普通的BatchBolt的唯一的区别是finishBatch这个方法被调用的时机:一个committer bolt的finishBatch方法在commit阶段调用。一个batch的commit阶段由storm保证只在前一个batch成功提交之后才会执行。有两个方法可以让一个普通BatchBolt变成committer:1) 实现ICommitter接口 2) 通过TransactionalTopologyBuilder的setCommitterBolt方法把BatchBolt添加到topology里面去。
processing阶段 vs. commit阶段
为了搞清楚在一个事务中processing阶段与commit阶段的区别, 让我们看下面的topology:
在这个topology里面有红色轮廓的bolt才是committers。
在processing阶段, bolt A会处理从spout发射出来的整个batch,调用finishBatch方法并且发送tuple给bolt B和bolt C。Bolt B是一个committer, 所以它会处理所有的tuple, 但是不会调用finishBatch方法。Bolt C同样也不会调用finishBatch方法, 因为它不知道它有没有从Bolt B接收到所有的tuple(因为Bolt B还在等着事务提交)。最后Bolt D会接收到Bolt C在调用execute方法的时候发送的所有的tuple。
在bolt B上,当batch提交的时候,finishBatch被调用。完成之后,Bolt C现在可以检测到它接收到了所有的tuple, 所以可以调用finishBatch了。最后,Bolt D将收到所有的batch并调用finishBatch了。
要注意的是,虽然Bolt D是一个committer,它在接收到整个batch的tuple之后不需要等待第二个commit信号。因为它是在commit阶段接收到的整个batch,它会调用finishBatch来完成整个事务。
committer bolt和普通的batch bolt一样都在commit阶段进行发送确认(ack),唯一的区别在于committer bolt在processing阶段不会调用finishBatch。
Acking
注意,当使用transactional topology的时候你不需要显式地去做任何的acking或者anchoring,storm在背后都做掉了。(storm对transactional topolgies里面的acking机制进行了高度的优化)
Failing a transaction
在使用普通bolt的时候, 你可以通过调用OutputCollector的fail方法来fail这个tuple所在的tuple树。Transactional Topology对用户隐藏了acking框架, 它提供一个不同的机制来fail一个batch(从而使得这个batch被replay):只要抛出一个FailedException就可以了。跟普通的异常不一样, 这个异常只会导致当前的batch被replay, 而不会使整个进程崩溃掉。
Transactional spout
TransactionalSpout接口跟普通的Spout接口完全不一样。一个TransactionalSpout的实现会发送一批一批(batch)的tuple, 而且必须保证同一批次tuples的transaction id始终一样。
在transactional topology运行的时候, transactional spout看起来是这样的一个结构:
在图的左边的coordinator是一个普通的storm的spout——它一直为事务的batch发射tuple。Emitter则像一个普通的storm bolt,它负责为每个batch实际发射tuple,emitter以all grouping的方式订阅coordinator的”batch emit”流。
由于TransactionalSpout发射的tuple可能需要会被replay, 因此需要具有幂等性(否则多次replay同一个tuple会使得最后的结果不对), 为了实现幂等性,需要保存Transactional Spout的少量的状态,这个状态是保存在ZooKeeper里面的。
关于如何实现一个TransactionalSpout的细节可以参见Javadoc。
Partitioned Transactional Spout
一种常见的TransactionalSpout是那种从多个queue broker读取数据然后再发射的tuple。比如TransactionalKafkaSpout就是这样工作的。IPartitionedTransactionalSpout把这些管理每个分区的状态以保证可以replay的幂等性的工作都自动化掉了。更多可以参考Javadoc。
配置
Transactional Topologies有两个重要的配置:
Zookeeper:默认情况下,transactional topology会把状态信息保存在一个zookeeper里面(协调集群的那个)。你可以通过这两个配置来指定其它的zookeeper:”transactional.zookeeper.servers” 和 “transactional.zookeeper.port“。
同时活跃的batch数量:你必须设置同时处理的batch数量,你可以通过”topology.max.spout.pending” 来指定, 如果你不指定,默认是1。
实现
Transactional Topologies的实现是非常优雅的。管理提交协议,检测失败并且串行提交看起来很复杂,但是使用storm的原语来进行抽象是非常简单的。
1、transactional spout是一个子topology, 它由一个coordinator spout和一个emitter bolt组成。
2、coordinator是一个普通的spout,并行度为1;emitter是一个bolt,并行度为P,使用all分组方式连接到coordinator的“batch”流上。
3、coordinator使用一个acking框架决定什么时候一个batch被成功执行(process)完成,然后去决定一个batch什么时候被成功提交(commit)。