标签:leetcode algorithm pascals triangle array 算法
Given an index k, return the kth row of the Pascal‘s triangle.
For example, given k = 3,
Return [1,3,3,1].
Note:
Could you optimize your algorithm to use only O(k) extra space?
这个问题比较简单。
vector<int> getRow(int rowIndex) { vector<int> row, prev_row; row.push_back(1); for (int i = 1; i <= rowIndex; ++i) { prev_row = row; row.clear(); row.push_back(1); for (int j = 1; j < prev_row.size(); j++) row.push_back(prev_row[j - 1] + prev_row[j]); row.push_back(1); } return row; }
更简洁的做法:
vector<int> getRow(int rowIndex) { vector<int> row(rowIndex + 1, 0); row[0] = 1; for (int i = 1; i <= rowIndex; ++i) { for (int j = i + 1; j > 0; --j) { row[j] += row[j - 1]; } } return row; }
LeetCode[Array]: Pascal's Triangle II
标签:leetcode algorithm pascals triangle array 算法
原文地址:http://blog.csdn.net/chfe007/article/details/41514675