标签:des style blog http io ar color os sp
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn ? 1 + Fn ? 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number ?1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
typedef long long LL;
using namespace std;
#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a )
const int MOD=10000;
typedef vector<int>vec;
typedef vector<vec>mat;
LL n;
mat mul(mat A,mat B)
{
mat C(A.size(),vec(B[0].size()));
REP(i,A.size())
{
REP(j,B[0].size())
{
REP(k,B.size())
C[i][j]=(C[i][j]+A[i][k]*B[k][j])%MOD;
}
}
return C;
}
mat pow(mat A,LL n)
{
mat B(A.size(),vec(A.size()));
REP(i,A.size())
B[i][i]=1;
while(n>0)
{
if(n&1) B=mul(B,A);
A=mul(A,A);
n>>=1;
}
return B;
}
void work()
{
mat A(2,vec(2));
A[0][0]=1;A[0][1]=1;
A[1][0]=1;A[1][1]=0;
A=pow(A,n);
cout<<A[1][0]<<endl;
}
int main()
{
std::ios::sync_with_stdio(false);
while(cin>>n&&n!=-1)
work();
return 0;
}
标签:des style blog http io ar color os sp
原文地址:http://blog.csdn.net/u013582254/article/details/41514533