public class BloomFilter<E> implements Serializable { private static final long serialVersionUID = 3507830443935243576L; private long timestamp;//用于时间戳更新机制 private HashMap<E, Boolean> deleteMap ; //储存已删除元素 private BitSet bitset;//位图存储 private int bitSetSize; // expected (maximum) number of elements to be added private int expectedNumberOfFilterElements; // number of elements actually added to the Bloom filter private int numberOfAddedElements; private int k; //每一个元素对应k个位 // encoding used for storing hash values as strings static Charset charset = Charset.forName("UTF-8"); // MD5 gives good enough accuracy in most circumstances. // Change to SHA1 if it's needed static String hashName = "MD5"; static final MessageDigest digestFunction; static { // The digest method is reused between instances to provide higher entropy. MessageDigest tmp; try { tmp = java.security.MessageDigest.getInstance(hashName); } catch (NoSuchAlgorithmException e) { tmp = null; } digestFunction = tmp; } /** * Constructs an empty Bloom filter. * * @param bitSetSize defines how many bits should be used for the filter. * @param expectedNumberOfFilterElements defines the maximum * number of elements the filter is expected to contain. */ public BloomFilter(int bitSetSize, int expectedNumberOfFilterElements) { this.expectedNumberOfFilterElements = expectedNumberOfFilterElements; this.k = (int) Math.round( (bitSetSize / expectedNumberOfFilterElements) * Math.log(2.0)); bitset = new BitSet(bitSetSize); deleteMap = new HashMap<E, Boolean>(); this.bitSetSize = bitSetSize; numberOfAddedElements = 0; } /** * Generates a digest based on the contents of a String. * * @param val specifies the input data. * @param charset specifies the encoding of the input data. * @return digest as long. */ public static long createHash(String val, Charset charset) { try { return createHash(val.getBytes(charset.name())); } catch (UnsupportedEncodingException e) { e.printStackTrace(); // Ingore } return -1; } /** * Generates a digest based on the contents of a String. * * @param val specifies the input data. The encoding is expected to be UTF-8. * @return digest as long. */ public static long createHash(String val) { return createHash(val, charset); } /** * Generates a digest based on the contents of an array of bytes. * * @param data specifies input data. * @return digest as long. */ public static long createHash(byte[] data) { long h = 0; byte[] res; synchronized (digestFunction) { res = digestFunction.digest(data); } for (int i = 0; i < 4; i++) { h <<= 8; h |= ((int) res[i]) & 0xFF; } return h; } /** * Compares the contents of two instances to see if they are equal. * * @param obj is the object to compare to. * @return True if the contents of the objects are equal. */ @SuppressWarnings("unchecked") @Override public boolean equals(Object obj) { if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } final BloomFilter<E> other = (BloomFilter<E>) obj; if (this.expectedNumberOfFilterElements != other.expectedNumberOfFilterElements) { return false; } if (this.k != other.k) { return false; } if (this.bitSetSize != other.bitSetSize) { return false; } if (this.bitset != other.bitset && (this.bitset == null || !this.bitset.equals(other.bitset))) { return false; } return true; } /** * Calculates a hash code for this class. * @return hash code representing the contents of an instance of this class. */ @Override public int hashCode() { int hash = 7; hash = 61 * hash + (this.bitset != null ? this.bitset.hashCode() : 0); hash = 61 * hash + this.expectedNumberOfFilterElements; hash = 61 * hash + this.bitSetSize; hash = 61 * hash + this.k; return hash; } /** * Calculates the expected probability of false positives based on * the number of expected filter elements and the size of the Bloom filter. * <br /><br /> * The value returned by this method is the <i>expected</i> rate of false * positives, assuming the number of inserted elements equals the number of * expected elements. If the number of elements in the Bloom filter is less * than the expected value, the true probability of false positives will be lower. * * @return expected probability of false positives. */ public double expectedFalsePositiveProbability() { return getFalsePositiveProbability(expectedNumberOfFilterElements); } /** * Calculate the probability of a false positive given the specified * number of inserted elements. * * @param numberOfElements number of inserted elements. * @return probability of a false positive. */ public double getFalsePositiveProbability(double numberOfElements) { // (1 - e^(-k * n / m)) ^ k return Math.pow((1 - Math.exp(-k * (double) numberOfElements / (double) bitSetSize)), k); } /** * Get the current probability of a false positive. The probability is calculated from * the size of the Bloom filter and the current number of elements added to it. * * @return probability of false positives. */ public double getFalsePositiveProbability() { return getFalsePositiveProbability(numberOfAddedElements); } /** * Returns the value chosen for K.<br /> * <br /> * K is the optimal number of hash functions based on the size * of the Bloom filter and the expected number of inserted elements. * * @return optimal k. */ public int getK() { return k; } /** * Sets all bits to false in the Bloom filter. */ public void clear() { bitset.clear(); numberOfAddedElements = 0; } /** * Adds an object to the Bloom filter. The output from the object's * toString() method is used as input to the hash functions. * * @param element is an element to register in the Bloom filter. */ public void add(E element) { deleteMap.remove(element); long hash; String valString = element.toString(); for (int x = 0; x < k; x++) { hash = createHash(valString + Integer.toString(x)); hash = hash % (long)bitSetSize; bitset.set(Math.abs((int)hash), true); } numberOfAddedElements ++; } /** * Remove all elements from a Collection to the Bloom filter. * @param c Collection of elements. */ public void removeAll(Collection<? extends E> c) { for (E element : c) remove(element); } public void remove(E element) { deleteMap.put(element, Boolean.TRUE); } public int getDeleteMapSize(){ return deleteMap.size(); } /** * Adds all elements from a Collection to the Bloom filter. * @param c Collection of elements. */ public void addAll(Collection<? extends E> c) { for (E element : c) { if (element != null) add(element); } } /** * Returns true if the element could have been inserted into the Bloom filter. * Use getFalsePositiveProbability() to calculate the probability of this * being correct. * * @param element element to check. * @return true if the element could have been inserted into the Bloom filter. */ public boolean contains(E element) { Boolean contains = deleteMap.get(element); if (contains != null && contains) return false; long hash; String valString = element.toString(); for (int x = 0; x < k; x++) { hash = createHash(valString + Integer.toString(x)); hash = hash % (long) bitSetSize; if (!bitset.get(Math.abs((int) hash))) return false; } return true; } /** * Returns true if all the elements of a Collection could have been inserted * into the Bloom filter. Use getFalsePositiveProbability() to calculate the * probability of this being correct. * @param c elements to check. * @return true if all the elements in c could have been inserted into the Bloom filter. */ public boolean containsAll(Collection<? extends E> c) { for (E element : c) if (!contains(element)) return false; return true; } /** * Read a single bit from the Bloom filter. * @param bit the bit to read. * @return true if the bit is set, false if it is not. */ public boolean getBit(int bit) { return bitset.get(bit); } /** * Set a single bit in the Bloom filter. * @param bit is the bit to set. * @param value If true, the bit is set. If false, the bit is cleared. */ public void setBit(int bit, boolean value) { bitset.set(bit, value); } /** * Return the bit set used to store the Bloom filter. * @return bit set representing the Bloom filter. */ public BitSet getBitSet() { return bitset; } /** * Returns the number of bits in the Bloom filter. Use count() to retrieve * the number of inserted elements. * * @return the size of the bitset used by the Bloom filter. */ public int size() { return this.bitSetSize; } /** * Returns the number of elements added to the Bloom filter after it * was constructed or after clear() was called. * * @return number of elements added to the Bloom filter. */ public int count() { return this.numberOfAddedElements; } /** * Returns the expected number of elements to be inserted into the filter. * This value is the same value as the one passed to the constructor. * * @return expected number of elements. */ public int getExpectedNumberOfElements() { return expectedNumberOfFilterElements; } /** * 返回更新的时间戳机制 * @return */ public long getTimestamp() { return timestamp; } /** * 设置跟新的时间戳 * @param timestamp */ public void setTimestamp(long timestamp) { this.timestamp = timestamp; } @Override public String toString() { return "BloomFilter [timestamp=" + timestamp + ", bitSetSize=" + bitSetSize + ", expectedNumberOfFilterElements=" + expectedNumberOfFilterElements + ", numberOfAddedElements=" + numberOfAddedElements + ", k=" + k +",deleteMapSize=" +getDeleteMapSize()+"]"; } }
原文地址:http://blog.csdn.net/troy__/article/details/41519689