标签:des style http io ar os sp for strong
通过特征检测和单应性匹配来发掘已知物体 ~~
- Use the function findHomography to find the transform between matched keypoints.
- Use the function perspectiveTransform to map the points.
检测 + 描述 + 匹配 ~ ~ 得到匹配的keypoints 之后可计算出形变矩阵
Finds a perspective transformation between two planes.
Parameters:
- srcPoints – Coordinates of the points in the original plane, a matrix of the type CV_32FC2 orvector<Point2f> .
- dstPoints – Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or avector<Point2f> .
- method –
Method used to computed a homography matrix. The following methods are possible:
- 0 - a regular method using all the points
- CV_RANSAC - RANSAC-based robust method
- CV_LMEDS - Least-Median robust method
- ransacReprojThreshold –
Maximum allowed reprojection error to treat a point pair as an inlier (used in the RANSAC method only). That is, if
then the point is considered an outlier. If srcPoints and dstPoints are measured in pixels, it usually makes sense to set this parameter somewhere in the range of 1 to 10.
- mask – Optional output mask set by a robust method ( CV_RANSAC or CV_LMEDS ). Note that the input mask values are ignored.
The functions find and return the perspective transformation between the source and the destination planes:
so that the back-projection error
is minimized. If the parameter method is set to the default value 0, the function uses all the point pairs to compute an initial homography estimate with a simple least-squares scheme.
然后对object的四个角执行透视投影变换
void perspectiveTransform(InputArray src, OutputArray dst, InputArray m)
Parameters:
- src – input two-channel or three-channel floating-point array; each element is a 2D/3D vector to be transformed.
- dst – output array of the same size and type as src.
- m – 3x3 or 4x4 floating-point transformation matrix.
Performs the perspective matrix transformation of vectors.
Code
#include <stdio.h> #include <iostream> #include "opencv2/core/core.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/calib3d/calib3d.hpp" #include "opencv2/nonfree/nonfree.hpp" using namespace cv; void readme(); /** @function main */ int main( int argc, char** argv ) { if( argc != 3 ) { readme(); return -1; } Mat img_object = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE ); Mat img_scene = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE ); if( !img_object.data || !img_scene.data ) { std::cout<< " --(!) Error reading images " << std::endl; return -1; } //-- Step 1: Detect the keypoints using SURF Detector int minHessian = 400; SurfFeatureDetector detector( minHessian ); std::vector<KeyPoint> keypoints_object, keypoints_scene; detector.detect( img_object, keypoints_object ); detector.detect( img_scene, keypoints_scene ); //-- Step 2: Calculate descriptors (feature vectors) SurfDescriptorExtractor extractor; Mat descriptors_object, descriptors_scene; extractor.compute( img_object, keypoints_object, descriptors_object ); extractor.compute( img_scene, keypoints_scene, descriptors_scene ); //-- Step 3: Matching descriptor vectors using FLANN matcher FlannBasedMatcher matcher; std::vector< DMatch > matches; matcher.match( descriptors_object, descriptors_scene, matches ); double max_dist = 0; double min_dist = 100; //-- Quick calculation of max and min distances between keypoints for( int i = 0; i < descriptors_object.rows; i++ ) { double dist = matches[i].distance; if( dist < min_dist ) min_dist = dist; if( dist > max_dist ) max_dist = dist; } printf("-- Max dist : %f \n", max_dist ); printf("-- Min dist : %f \n", min_dist ); //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist ) std::vector< DMatch > good_matches; for( int i = 0; i < descriptors_object.rows; i++ ) { if( matches[i].distance < 3*min_dist ) { good_matches.push_back( matches[i]); } } Mat img_matches; drawMatches( img_object, keypoints_object, img_scene, keypoints_scene, good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //-- Localize the object std::vector<Point2f> obj; std::vector<Point2f> scene; for( int i = 0; i < good_matches.size(); i++ ) { //-- Get the keypoints from the good matches obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt ); scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt ); } Mat H = findHomography( obj, scene, CV_RANSAC ); //-- Get the corners from the image_1 ( the object to be "detected" ) std::vector<Point2f> obj_corners(4); obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 ); obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows ); std::vector<Point2f> scene_corners(4); perspectiveTransform( obj_corners, scene_corners, H); //-- Draw lines between the corners (the mapped object in the scene - image_2 ) line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 ); line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 ); line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 ); line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 ); //-- Show detected matches imshow( "Good Matches & Object detection", img_matches ); waitKey(0); return 0; } /** @function readme */ void readme() { std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
OpenCV Tutorials —— Features2D + Homography to find a known object
标签:des style http io ar os sp for strong
原文地址:http://www.cnblogs.com/sprint1989/p/4125557.html