码迷,mamicode.com
首页 > 其他好文 > 详细

hadoop多文件输出

时间:2014-11-27 23:47:45      阅读:439      评论:0      收藏:0      [点我收藏+]

标签:hadoop   多文件输出   

在旧的API中使用多文件输出,只需要自定义类继承MultipleTextOutputFormat类 重写它下面的generateFileNameForKeyValue 方法即可, 直接上例子。

输入文件 内容:

bubuko.com,布布扣

目的是按照 字母开头的文件输出,并统计单词计数,输出结果为:

bubuko.com,布布扣

代码如下:

package defined;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.mapred.lib.MultipleTextOutputFormat;
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import java.util.Iterator;
 
/**
 * User: XD
 */
public class test {
	static final String INPUT_PATH = "hdfs://localhost:9000/input";
	static final Path OUTPUT_PATH = new Path("hdfs://localhost:9000/output");
	
    public static class MapClass extends MapReduceBase implements Mapper<LongWritable, Text, Text,  LongWritable> {
 
        @Override
        public void map(LongWritable key, Text value,  OutputCollector<Text, LongWritable> output, Reporter reporter) throws IOException {
        	final String[] splited = value.toString().split(" ");
    		for(String val : splited){
    			output.collect(new Text(val), new LongWritable(1));
    			}
        }
    }
    public static class ReduceClass extends MapReduceBase implements Reducer<Text, LongWritable, Text,  LongWritable> {

    	@Override
public void reduce(Text key, Iterator<LongWritable> values,
		OutputCollector<Text, LongWritable> collect, Reporter arg3)
		throws IOException {
	// TODO Auto-generated method stub
	long sum = 0L;
	while(values.hasNext()){
		sum += values.next().get();
	}
	collect.collect(key, new LongWritable(sum));
}
}

    public static class PartitionFormat extends MultipleTextOutputFormat<Text, LongWritable> {
    	@Override
		protected String generateFileNameForKeyValue(Text key , LongWritable value,String name){
			char c = key.toString().toLowerCase().charAt(0);
			if(c>='a' && c<='z'){
				return c+".txt";
			}else{
				return "other.txt";
			}
		}
    }
    
    public static void main(String[] args) throws IOException, URISyntaxException {
        Configuration conf = new Configuration();
        JobConf job = new JobConf(conf, test.class);
        final FileSystem filesystem = FileSystem.get(new URI(INPUT_PATH),conf);
		final Path outPath = OUTPUT_PATH;
		if(filesystem.exists(outPath)){
			filesystem.delete(outPath, true);
		}
		
		
		//1.1 读取文件 位置
		FileInputFormat.setInputPaths(job, INPUT_PATH);
		//输出文件位置
        FileOutputFormat.setOutputPath(job, OUTPUT_PATH);
    
        job.setJobName("Multipleoutput");
        
        job.setMapperClass(MapClass.class);
        job.setReducerClass(ReduceClass.class);
 
        job.setInputFormat(TextInputFormat.class);
        job.setOutputFormat(PartitionFormat.class);
        
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);
 
        job.setNumReduceTasks(1);
        JobClient.runJob(job);
    }
}

但是在新的api中,就不能像上面那样操作,需要自定义MultipleOutputormat类,在重写generateFileNameForKeyValue 方法,似乎难度较大,在此 给出一个简单的操作,使用org.apache.hadoop.mapred.lib.MultipleOutputs也是直接上例子:

输入:

bubuko.com,布布扣

还是统计输出到不同的文件。

输出结果:

bubuko.com,布布扣

 结果是dest-r-00000文件下

代码:

package wordcount;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;


import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;


public class wordcount {

	/**
	 * @param args
	 */
	static final String INPUT_PATH = "hdfs://localhost:9000/input";
	static final String OUTPUT_PATH = "hdfs://localhost:9000/output";
	
	public static class Map extends Mapper<LongWritable , Text , Text , LongWritable>{
		protected void map(LongWritable key,Text value,Context context) throws IOException, InterruptedException{
		final String[] splited = value.toString().split(" ");
		for(String val : splited){
			context.write(new Text(val), new LongWritable(1));
			}	
		}
	}
	
	public static class Reduce extends Reducer<Text ,LongWritable, Text , LongWritable>{
		private MultipleOutputs<Text,LongWritable> mos;
		String dest;
		protected  void setup(Context context){
			mos = new MultipleOutputs<Text, LongWritable>(context);
		}
		protected void reduce (Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException{
			long sum = 0L;
			char c = key.toString().toLowerCase().charAt(0);
			for(LongWritable val : values){
				sum += val.get();
			}
			if(c>='a' && c<='z'){
				mos.write("dest", key, new LongWritable(sum));
			}else{
				mos.write("other", key, new LongWritable(sum));
			}
			context.write(key, new LongWritable(sum));
		}
		protected  void cleanup(Context context) throws IOException, InterruptedException{
			mos.close();
		}
	}
	
	
	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException, URISyntaxException {
		// TODO Auto-generated method stub
		Configuration conf = new Configuration();
		
		final FileSystem filesystem = FileSystem.get(new URI(INPUT_PATH),conf);
		final Path outPath = new Path(OUTPUT_PATH);
		if(filesystem.exists(outPath)){
			filesystem.delete(outPath, true);
		}
		Job job = new Job(conf,wordcount.class.getSimpleName());
		
		//1.1 读取文件 位置
		FileInputFormat.setInputPaths(job, INPUT_PATH);
		
		//1.2指定的map类//1.3 map输出的key value 类型 要是和最终的输出类型是一样的 可以省略
		job.setMapperClass(Map.class);
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(LongWritable.class);
		job.setJarByClass(wordcount.class);
		
		//1.3 分区
		job.setPartitionerClass(HashPartitioner.class);
		
		//1.4分组
		
		//1.5 归约
		
		//2.1 copy 经由网络
		
		//2.2 指定自定义的reduce类
		job.setReducerClass(Reduce.class);
		//指定 reduce的输出类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(LongWritable.class);
		
		//2.3指定写出到什么位置
		FileOutputFormat.setOutputPath(job, new Path(OUTPUT_PATH));
		
		MultipleOutputs.addNamedOutput(job, "dest", TextOutputFormat.class, Text.class, LongWritable.class);
		MultipleOutputs.addNamedOutput(job, "other", TextOutputFormat.class, Text.class, LongWritable.class);
		//提交到jobtracker执行。  此函数还将会打印出作业执行的详细信息
		job.waitForCompletion(true);
		
	}

}

由于懒惰,没有书写更好的例子,只是简单的介绍,并且并没有将路径写成通用的,读者可自行书写,如有更好的解决,还请大家不吝赐教,小弟拜谢!!

hadoop多文件输出

标签:hadoop   多文件输出   

原文地址:http://blog.csdn.net/xd_122/article/details/41553567

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!