标签:style http io ar color os sp for strong
此课程(MOOCULUS-2 "Sequences and Series")由Ohio University于2014年在Coursera平台讲授。
本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution
Summary
Exercises 2.7
1. Explain why $$\sum_{n=1}^\infty {n^2\over 2n^2+1}$$ diverges.
Solution:
By $n^{\text{th}}$ test, $$\lim_{n\to\infty} {n^2\over 2n^2+1}={1\over2}\neq0$$ Therefore it diverges.
2. Explain why $$\sum_{n=1}^\infty {5\over 2^{1/n}+14}$$ diverges.
Solution:
By $n^{\text{th}}$ test, $$\lim_{n\to\infty} {5\over 2^{1\over n}+14}={5\over1+14}={1\over3}\neq0$$ Thus it diverges.
3. Explain why $$\sum_{n=1}^\infty {3\over n}$$ diverges.
Solution:
$$\sum_{n=1}^\infty {3\over n}=3\cdot\sum_{n=1}^{\infty}{1\over n}$$ which is a harmonic series.
4. Compute $$\sum_{n=0}^\infty {4\over (-3)^n}- {3\over 3^n}$$
Solution:
Geometric series: $$\sum_{n=0}^\infty {4\over (-3)^n}- {3\over 3^n}$$ $$=\sum_{n=0}^{\infty} 4\cdot(-{1\over3})^n-3\cdot({1\over3})^n$$ $$=4\cdot{1\over 1-(-{1\over3})}-3\cdot{1\over 1-{1\over3}}$$ $$=4\times{3\over4}-3\times{3\over2}=-{3\over2}$$
5. Compute $$\sum_{n=0}^\infty {3\over 2^n}+ {4\over 5^n}$$
Solution:
Geometric series: $$\sum_{n=0}^\infty {3\over 2^n}+ {4\over 5^n}$$ $$= 3\cdot{1\over 1-{1\over2}}+4\cdot{1\over 1-{1\over5}}=6+5=11$$
6. Compute $$\sum_{n=0}^\infty {4^{n+1}\over 5^n}$$
Solution: Geometric series: $$\sum_{n=0}^\infty {4^{n+1}\over 5^n}$$ $$=\sum_{n=0}^{\infty}4\cdot({4\over5})^n=4\times{1\over 1-{4\over5}}=20$$
7. Compute $$\sum_{n=0}^\infty {3^{n+1}\over 7^{n+1}}$$
Solution:
Geometric series: $$\sum_{n=0}^\infty {3^{n+1}\over 7^{n+1}}$$ $$=\sum_{n=0}^\infty {3\over7}\cdot{3^{n}\over 7^{n}}={3\over7}\times{1\over 1-{3\over7}}={3\over4}$$
8. Compute $$\sum_{n=1}^\infty \left({3\over 5}\right)^n$$
Solution:
Geometric series: $$\sum_{n=1}^\infty \left({3\over 5}\right)^n$$ $$=\sum_{n=0}^\infty \left({3\over 5}\right)^n-1$$ $$={1\over 1-{3\over5}}-1={3\over2}$$ Alternatively, $$\sum_{n=1}^\infty \left({3\over 5}\right)^n={{3\over5}\over 1-{3\over5}}={3\over2}$$
9. Compute $$\sum_{n=1}^\infty {3^n\over 5^{n+1}}$$
Solution:
Geometric series: $$\sum_{n=1}^\infty {3^n\over 5^{n+1}}$$ $$=\sum_{n=0}^\infty {1\over5}\cdot{3^n\over 5^{n}}-{1\over5}$$ $$={1\over5}\times{1\over 1-{3\over5}}-{1\over5}={3\over10}$$ Alternatively, $$\sum_{n=1}^\infty {3^n\over 5^{n+1}}={1\over5}\times{{3\over5}\over 1-{3\over5}}={3\over10}$$
Additional Exercises
1. Evaluate $$\sum_{n=5}^{\infty}(-{4\over7})^n$$
Solution:
Geometric series: $$\sum_{n=5}^{\infty}(-{4\over7})^n={(-{4\over7})^5\over 1-(-{4\over7})}=-{1024\over26411}$$
2. Test $$\sum_{n=2}^{\infty}-8\cdot({6\over11})^n$$
Solution:
$$\sum_{n=2}^{\infty}-8\cdot({6\over11})^n=-8\cdot\sum_{n=2}^{\infty}({6\over11})^n$$ which is a geometric series and $r < 1$, therefore it converges.
3. Evaluate $$\sum_{i=2}^{\infty}{12\over 9i^2+21i+10}$$
Solution:
$$\sum_{i=2}^{\infty}{12\over 9i^2+21i+10}=\sum_{i=2}^{\infty}{12\over (3i+5) (3i+2)}$$ $$=\sum_{i=2}^{\infty}4\cdot({1\over 3i+2}-{1\over 3i+5})=4\times{1\over8}={1\over2}$$
4. Test $$\sum_{m=3}^{\infty}{(7m+5)\cdot(m-8)\over(5m+4)\cdot(5m-7)}$$
Solution:
By $n^{\text{th}}$ test: $$\lim_{m\to\infty}{(7m+5)\cdot(m-8)\over(5m+4)\cdot(5m-7)}={7\over25}\neq0$$ Thus it diverges.
5. Test $$\sum_{n=0}^{\infty}{5\over 7n+42}$$
Solution:
$$\sum_{n=0}^{\infty}{5\over 7n+42}={5\over7}\cdot\sum_{n=0}^{\infty}{1\over n+6}$$ which is a harmonic series. Thus it diverges.
6. Test $$\sum_{n=5}^{\infty}{2(n^2+2)\over 7^n}$$
Solution:
Comparison test: $$\sum_{n=5}^{\infty}{2(n^2+2)\over 7^n}=\sum_{n=5}^{\infty}{2n^2+4\over 7^n}\leq\sum_{n=5}^{\infty}{2^n\over 7^n},\ \text{when}\ n\geq7$$ And $$\sum_{n=5}^{\infty}{2^n\over 7^n}=\sum_{n=5}^{\infty}({2\over7})^n$$ is a geometric series which is convergent. Thus $$\sum_{n=5}^{\infty}{2(n^2+2)\over 7^n}$$ is convergent, too.
Coursera微积分-2: 数列与级数学习笔记2. Series
标签:style http io ar color os sp for strong
原文地址:http://www.cnblogs.com/zhaoyin/p/4127517.html