标签:style blog http io ar color os sp for
还没开始写题解我就已经内牛满面了,从晚饭搞到现在,WA得我都快哭了呢
题意:
在DotA中,你现在1V5,但是你的英雄有一个半径为r的眩晕技能,已知敌方五个英雄的坐标,问能否将该技能投放到一个合适的位置,使得对面所有敌人都被眩晕,这样你就有机会能够逃脱。
分析:
对于敌方一个英雄来说,如果技能的投放位置距离他不超过r则满足要求,那么如果要眩晕所有的敌人,可行区域就是以五人为中心的半径为r的圆的相交区域。
现在问题就转化为求五个半径相同的圆的相交部分的面积,如果只有一个点则输出该点。
在求交之前,我们可以先去除
我们将所交区域划分为一个凸多边形和周围若干个弓形。
弓形在两圆相交时便能求出,而且还能求出两圆的交点(注意两个交点p1,p2一定要按照逆时针的顺序,因为叉积有正负),也就是凸多边的顶点,其面积形直接用叉积来计算。
给两个传送门,认真学习一下吧:
http://www.cnblogs.com/oyking/archive/2013/11/14/3424517.html
对于枚举一个圆求与另外四个圆相交区域,是按照极角的区间求交集,详见:
http://hi.baidu.com/aekdycoin/item/7618bee9f473ed3e86d9ded6
五个圆是否交于一点还要另行判断
最后再感慨一下做计算几何说多了都是泪啊
1 #include <cstdio> 2 #include <cmath> 3 #include <cstring> 4 #include <algorithm> 5 6 const int maxn = 10; 7 const double eps = 1e-8; 8 const double PI = acos(-1.0); 9 10 int dcmp(double x) 11 { return (x > eps) - (x < -eps); } 12 13 struct Point 14 { 15 double x, y; 16 Point(double x=0, double y=0):x(x), y(y) {} 17 void read() { scanf("%lf%lf", &x, &y); } 18 }; 19 typedef Point Vector; 20 Point operator + (const Vector& a, const Vector& b) 21 { return Point(a.x+b.x, a.y+b.y); } 22 Point operator - (const Vector& a, const Vector& b) 23 { return Point(a.x-b.x, a.y-b.y); } 24 Vector operator * (const Vector& a, double p) 25 { return Point(a.x*p, a.y*p); } 26 Vector operator / (const Vector& a, double p) 27 { return Point(a.x/p, a.y/p); } 28 bool operator == (const Point& a, const Point& b) 29 { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } 30 31 double Dot(const Vector& a, const Vector& b) 32 { return a.x*b.x + a.y*b.y; } 33 double Cross(const Vector& a, const Vector& b) 34 { return a.x*b.y - a.y*b.x; } 35 double Length(const Vector& a) 36 { return sqrt(Dot(a, a)); } 37 Vector unit(const Vector& a) 38 { return a / Length(a); } 39 Vector Normal(const Vector& a) 40 { 41 double l = Length(a); 42 return Vector(-a.y/l, a.x/l); 43 } 44 double Angle(const Vector& a) 45 { return atan2(a.y, a.x); } 46 47 Point Rotate(const Point& p, double angle, const Point& o = Point(0, 0)) 48 { 49 Vector t = p - o; 50 t = Vector(t.x*cos(angle)-t.y*sin(angle), t.x*sin(angle)+t.y*cos(angle)); 51 return t + o; 52 } 53 54 struct Region 55 { 56 double st, ed; 57 Region(double s=0, double e=0):st(s), ed(e) {} 58 }; 59 60 struct Circle 61 { 62 Point c; 63 double r; 64 Circle() {} 65 Circle(Point c, double r):c(c), r(r) {} 66 67 void read() { c.read(); scanf("%lf", &r); } 68 69 double area() const { return PI * r * r; } 70 71 bool contain(const Circle& rhs) const 72 { return dcmp(Length(c-rhs.c) + rhs.r - r) <= 0; } 73 74 bool contain(const Point& p) const 75 { return dcmp(Length(c-p) - r) <= 0; } 76 77 bool intersect(const Circle& rhs) const 78 { return dcmp(Length(c-rhs.c) - r - rhs.r) < 0; } 79 80 bool tangency(const Circle& rhs) const 81 { return dcmp(Length(c-rhs.c) - r - rhs.r) == 0; } 82 83 Point get_point(double ang) const 84 { return Point(c.x + r * cos(ang), c.y + r * sin(ang)); } 85 }; 86 87 void IntersectionPoint(const Circle& c1, const Circle& c2, Point& p1, Point& p2) 88 { 89 double d = Length(c1.c - c2.c); 90 double l = (c1.r*c1.r + d*d - c2.r*c2.r) / (2 * d); 91 double h = sqrt(c1.r*c1.r - l*l); 92 Point mid = c1.c + unit(c2.c-c1.c) * l; 93 Vector t = Normal(c2.c - c1.c) * h; 94 p1 = mid + t; 95 p2 = mid - t; 96 } 97 98 double IntersectionArea(const Circle& c1, const Circle& c2) 99 { 100 double area = 0.0; 101 const Circle& M = c1.r > c2.r ? c1 : c2; 102 const Circle& N = c1.r > c2.r ? c2 : c1; 103 double d = Length(c1.c-c2.c); 104 105 if(d < M.r + N.r && d > M.r - N.r) 106 { 107 double Alpha = 2.0 * acos((M.r*M.r + d*d - N.r*N.r) / (2 * M.r * d)); 108 double Beta = 2.0 * acos((N.r*N.r + d*d - M.r*M.r) / (2 * N.r * d)); 109 area = ( M.r*M.r*(Alpha - sin(Alpha)) + N.r*N.r*(Beta - sin(Beta)) ) / 2.0; 110 } 111 else if(d <= M.r - N.r) area = N.area(); 112 113 return area; 114 } 115 116 struct Region_vector 117 { 118 int n; 119 Region v[5]; 120 void clear() { n = 0; } 121 void add(const Region& r) { v[n++] = r; } 122 } *last, *cur; 123 124 Circle cir[maxn]; 125 bool del[maxn]; 126 double r; 127 int n = 5; 128 129 bool IsOnlyOnePoint() 130 { 131 bool flag = false; 132 Point t; 133 for(int i = 0; i < n; ++i) 134 { 135 for(int j = i + 1; j < n; ++j) 136 { 137 if(cir[i].tangency(cir[j])) 138 { 139 t = (cir[i].c + cir[j].c) / 2; 140 flag = true; 141 break; 142 } 143 } 144 } 145 146 if(!flag) return false; 147 for(int i = 0; i < n; ++i) 148 if(!cir[i].contain(t)) return false; 149 150 printf("Only the point (%.2f, %.2f) is for victory.\n", t.x, t.y); 151 return true; 152 } 153 154 bool solve() 155 { 156 if(IsOnlyOnePoint()) return true; 157 memset(del, false, sizeof(del)); 158 159 for(int i = 0; i < n; ++i) 160 for(int j = 0; j < n; ++j) 161 { 162 if(del[j] || i == j) continue; 163 if(cir[i].contain(cir[j])) 164 { 165 del[i] = true; 166 break; 167 } 168 } 169 170 double ans = 0.0; 171 for(int i = 0; i < n; ++i) 172 { 173 if(del[i]) continue; 174 last->clear(); 175 Point p1, p2; 176 for(int j = 0; j < n; ++j) 177 { 178 if(del[j] || i == j) continue; 179 if(!cir[i].intersect(cir[j])) return false; 180 cur->clear(); 181 IntersectionPoint(cir[i], cir[j], p1, p2); 182 double rs = Angle(p2 - cir[i].c); 183 double rt = Angle(p1 - cir[i].c); 184 if(dcmp(rs) < 0) rs += 2 * PI; 185 if(dcmp(rt) < 0) rt += 2 * PI; 186 if(last->n == 0) 187 { 188 if(dcmp(rt - rs) < 0) 189 { 190 cur->add(Region(rs, 2*PI)); 191 cur->add(Region(0, rt)); 192 } 193 else cur->add(Region(rs, rt)); 194 } 195 else 196 { 197 for(int k = 0; k < last->n; ++k) 198 { 199 if(dcmp(rt - rs) < 0) 200 { 201 if(dcmp(last->v[k].st-rt) >= 0 && dcmp(last->v[k].ed-rs) <= 0) continue; 202 if(dcmp(last->v[k].st-rt) < 0) cur->add(Region(last->v[k].st, std::min(last->v[k].ed, rt))); 203 if(dcmp(last->v[k].ed-rs) > 0) cur->add(Region(std::max(last->v[k].st, rs), last->v[k].ed)); 204 } 205 else 206 { 207 if(dcmp(rt-last->v[k].st <= 0 || dcmp(rs-last->v[k].ed) >= 0)) continue; 208 cur->add(Region(std::max(rs, last->v[k].st), std::min(rt, last->v[k].ed))); 209 } 210 } 211 } 212 std::swap(cur, last); 213 if(last->n == 0) break; 214 } 215 for(int j = 0; j < last->n; ++j) 216 { 217 p1 = cir[i].get_point(last->v[j].st); 218 p2 = cir[i].get_point(last->v[j].ed); 219 ans += Cross(p1, p2) / 2; 220 double ang = last->v[j].ed - last->v[j].st; 221 ans += cir[i].r * cir[i].r * (ang - sin(ang)) / 2; 222 } 223 } 224 225 if(dcmp(ans) == 0) return false; 226 printf("The total possible area is %.2f.\n", ans); 227 return true; 228 } 229 230 int main(void) 231 { 232 //freopen("3467in.txt", "r", stdin); 233 last = new Region_vector; 234 cur = new Region_vector; 235 while(scanf("%lf", &r) == 1) 236 { 237 Point t; 238 for(int i = 0; i < n; ++i) 239 { 240 t.read(); 241 cir[i] = Circle(t, r); 242 } 243 if(!solve()) 244 puts("Poor iSea, maybe 2012 is coming!"); 245 } 246 247 return 0; 248 }
HDU 3467 (求五个圆相交面积) Song of the Siren
标签:style blog http io ar color os sp for
原文地址:http://www.cnblogs.com/AOQNRMGYXLMV/p/4127571.html