今天继续,下面是开始要生成正负例来训练分类器了,首先:
// TRAIN DETECTOR ========================================================== // Initialize structures tld.imgsize = size(tld.source.im0.input); //为fern准备的训练集 tld.X = cell(1,length(tld.source.idx)); //training data for fern tld.Y = cell(1,length(tld.source.idx)); %为nearest neighbor准备的训练集 tld.pEx = cell(1,length(tld.source.idx)); // training data for NN tld.nEx = cell(1,length(tld.source.idx)); //输入: //tld.source.bb:用户目标标定框 //tld.grid: 生成的gridbox信息矩阵 //输出: // overlap一维行向量,记录GRID中的各个gridbox与用户目标标定框的重叠率 overlap = bb_overlap(tld.source.bb,tld.grid);进入bb_overlap来看一下:
// Input
double *bb1 = mxGetPr(prhs[0]); int M1 = mxGetM(prhs[0]); int N1 = mxGetN(prhs[0]);//4X1
double *bb2 = mxGetPr(prhs[1]); int M2 = mxGetM(prhs[1]); int N2 = mxGetN(prhs[1]);//6Xn(n表示gridbox总数)
// Output
if (N1 == 0 || N2 == 0) {
N1 = 0; N2 = 0;
}
plhs[0] = mxCreateDoubleMatrix(N1, N2, mxREAL);//创建输出矩阵,1Xgridbox的数量
double *out = mxGetPr(plhs[0]);
for (int j = 0; j < N2; j++) {//gridbox的数量
for (int i = 0; i < N1; i++) {//1
*out++ = bb_overlap(bb1 + M1*i, bb2 + M2*j);//计算重叠度
}
}
double bb_overlap(double *bb1, double *bb2) {
if (bb1[0] > bb2[2]) { return 0.0; }//判断如果两个矩形没有相交部分,重叠度就为0;
if (bb1[1] > bb2[3]) { return 0.0; }
if (bb1[2] < bb2[0]) { return 0.0; }
if (bb1[3] < bb2[1]) { return 0.0; }
double colInt = min(bb1[2], bb2[2]) - max(bb1[0], bb2[0]) + 1;//求相交矩形的宽和高
double rowInt = min(bb1[3], bb2[3]) - max(bb1[1], bb2[1]) + 1;
double intersection = colInt * rowInt;//相交面积
double area1 = (bb1[2]-bb1[0]+1)*(bb1[3]-bb1[1]+1);//分别求两个输入矩形的面积
double area2 = (bb2[2]-bb2[0]+1)*(bb2[3]-bb2[1]+1);
return intersection / (area1 + area2 - intersection);//求重叠率
}再接着
//输入:
//tld.img{1}.input:输入图像,第一帧
//tld.bb(:,1):用户目标标定框
//输出:
//tld.target:目标标定框中特定的图像
tld.target = img_patch(tld.img{1}.input,tld.bb(:,1));进入img_patch,这个函数比较庞大,先看其中用到的一部分:
//如果4个坐标值都是整数
if sum(abs(round(bb)-bb))==0
L = max([1 bb(1)]);
T = max([1 bb(2)]);
R = min([size(img,2) bb(3)]);
B = min([size(img,1) bb(4)]);
patch = img(T:B,L:R);//在不超过画面尺寸和小于1x1的情况下,取出BB框出的画面
% Sub-pixel accuracy
else
cp = 0.5 * [bb(1)+bb(3); bb(2)+bb(4)]-1;//bbox的中心坐标 center point
%[1 0 -cp(1)]
%[0 1 -cp(2)]
%[0 0 1 ]
H = [1 0 -cp(1); 0 1 -cp(2); 0 0 1];
bbW = bb(3,:)-bb(1,:);//宽
bbH = bb(4,:)-bb(2,:);//高
if bbW <= 0 || bbH <= 0
patch = [];
return;
end
box = [-bbW/2 bbW/2 -bbH/2 bbH/2];
if size(img,3) == 3//如果图像有三个通道,即判断图片是否为真彩色
for i = 1:3
P = warp(img(:,:,i),inv(H),box);
patch(:,:,i) = uint8(P);
end
else
patch = warp(img,inv(H),box);//inv(H)=[1 0 cp(1); 0 1 cp(2); 0 0 1];平移变换
patch = uint8(patch);
end
end上面的函数功能就是对BB区域的图像提取,但是有针对坐标为整数和小数的处理,这里应该只用到整数部分,但至于小数坐标的处理跟踪了一下代码,发现是对图像作了平移的仿射变换,但是至于为什么要这么做,我也不理解,感觉直接舍去小数部分问题应该也不大吧(个人理解,没有看懂)。
好了下面开始产生正训练样本了:
//输入:
//overlap:一维行向量,记录GRID中的各个gridbox与用户目标标定框的重叠率
//tld.p_par_init:opt.p_par_init= struct(‘num_closest‘,10,‘num_warps‘,20,‘noise‘,5,‘angle‘,20,‘shift‘,0.02,‘scale‘,0.02);
//输出:
//pX:10 X length(idxP)*20 (length(idxP)<=10,20为‘num_warps‘,20)的矩阵列向量表示一个gridbox的10棵树上的13位有效的code
//pEx:225X1的列向量,各元素值为原像素值减去像素均值
//bbP:最靠近BBOX的的gridbox,列向量表示该box的4个顶点
[pX,pEx,bbP] = tldGeneratePositiveData(tld,overlap,tld.img{1},tld.p_par_init);
pY = ones(1,size(pX,2));%1 X length(idxP)*20这个函数也是比较大的,但是还要耐心的往下看啊
pX = []; pEx = []; // Get closest bbox [~,idxP] = max(overlap);//表示行不管,只取列,整个表达式表示最大overlap所对应的列,一维 bbP0 = tld.grid(1:4,idxP);//1~4表示矩阵的4个顶点分布在四行,此取最靠近BBOX的的gridbox // Get overlapping bboxes idxP = find(overlap > 0.6);//返回overlap > 0.6所对应的列索引 if length(idxP) > p_par.num_closest//如果overlap > 0.6的gridbox数大于10 [~,sIdx] = sort(overlap(idxP),‘descend‘); //降序排序 idxP = idxP(sIdx(1:p_par.num_closest));//取前p_par.num_closest个最大重叠度的bboxes所在的列 end bbP = tld.grid(:,idxP);//取出10个最大重叠度的gridboxes if isempty(bbP), return; end % Get hull bbH = bb_hull(bbP);%得到能包围所有bbp中boxes的最小矩形 cols = bbH(1):bbH(3); rows = bbH(2):bbH(4); im1 = im0; //返回一个225x1(pEx)的列向量,各元素值为原像素值减去像素均值 pEx = tldGetPattern(im1,bbP0,tld.model.patchsize);// if tld.model.fliplr pEx = [pEx tldGetPattern(im1,bbP0,tld.model.patchsize,1)]; end //返回20个正例 for i = 1:p_par.num_warps//p_par.num_warps=20 if i > 1 randomize = rand; // Sets the internal randomizer to the same state //patch_input = img_patch(im0.input,bbH,randomize,p_par); //返回将画面进行仿射变换后的patch patch_blur = img_patch(im0.blur,bbH,randomize,p_par);//bbH包围所有bbp中bboxes的最小矩形 //这个很重要,保证在C调用里的偏移的起始地址可以是一样的 im1.blur(rows,cols) = patch_blur;//把仿射变换后的图像放到原图像对应的位置(能包围所有bbp中boxes的最小矩形) //im1.input(rows,cols) = patch_input; end // Measures on blured image //单次返回10Xlength(idxP)的矩阵,列向量表示一个gridbox的10棵树上的13位code, //最后返回10Xlength(idxP)*20的矩阵 pX = [pX fern(5,im1,idxP,0)];//idxP :overlap > 0.6所对应的列索引 // Measures on input image //pEx(:,i) = tldGetPattern(im1,bbP0,tld.model.patchsize); //pEx = [pEx tldGetPattern(im1,tld.grid(1:4,idxP),tld.model.patchsize)]; end当然这个函数是不能这么草草了事的,还有三大函数需要进一步细看:
1.tldGetPattern()
nBB = size(bb,2);//得到bbp0(最靠近BBOX的gridbox)的列,值为1
pattern = zeros(prod(patchsize),nBB);//15*15 X 1 矩阵,返回矩阵
if ~exist(‘flip‘,‘var‘)
flip= 0;
end
// for every bounding box
for i = 1:nBB//1
// sample patch
patch = img_patch(img.input,bb(:,i));//取出对应框中的图像
// flip if needed
if flip
patch = fliplr(patch);
end
// normalize size to ‘patchsize‘ and nomalize intensities to ZMUV
//返回一个225x1的列向量,各元素值为原像素值减去像素均值
pattern(:,i) = tldPatch2Pattern(patch,patchsize);//patch压缩变换到patchsize大小,然后将各个元素减去元素均值
end切入到tldPatch2Pattern看一眼:
patch = imresize(patch,patchsize); // ‘bilinear‘ is faster pattern = double(patch(:));//此时变成225X1的矩阵 pattern = pattern - mean(pattern);//mean(pattern)求各列向量的均值2.img_patch()(4个传参)
rand(‘state‘,randomize);
randn(‘state‘,randomize);
//‘noise‘,5,‘angle‘,20,‘shift‘,0.02,‘scale‘,0.02;
NOISE = p_par.noise;
ANGLE = p_par.angle;
SCALE = p_par.scale;
SHIFT = p_par.shift;
cp = bb_center(bb)-1;//HULL矩形的中心
Sh1 = [1 0 -cp(1); 0 1 -cp(2); 0 0 1];
sca = 1-SCALE*(rand-0.5);%0.99~1.01
//[0.99~1.01 ]
//[ 0.99~1.01 ]
//[ 1 ]
Sca = diag([sca sca 1]);
ang = 2*pi/360*ANGLE*(rand-0.5);//-10 ~ 10度 实际为弧度
ca = cos(ang);
sa = sin(ang);
Ang = [ca, -sa; sa, ca];
Ang(end+1,end+1) = 1;
shR = SHIFT*bb_height(bb)*(rand-0.5);//-0.01~1.01*bb_height(bb)
shC = SHIFT*bb_width(bb)*(rand-0.5);//-0.01~1.01*bb_width(bb)
Sh2 = [1 0 shC; 0 1 shR; 0 0 1];
bbW = bb_width(bb)-1;
bbH = bb_height(bb)-1;
box = [-bbW/2 bbW/2 -bbH/2 bbH/2];
H = Sh2*Ang*Sca*Sh1;
bbsize = bb_size(bb);
patch = uint8(warp(img,inv(H),box) + NOISE*randn(bbsize(1),bbsize(2)));//给图像造成5的高斯噪声以上的代码注释就少了,因为全都是关于仿射变换的,具体可以参看仿射变换,大体就是作者在论文中提到的(shift+-1%,scale +-1%, in-plane rotation +-10度)用来提高训练样本的多样性。
3.fern()(第一个传参为5,获得模式)
unsigned char *input = (unsigned char*) mxGetPr(mxGetField(prhs[1],0,"input"));
unsigned char *blur = (unsigned char*) mxGetPr(mxGetField(prhs[1],0,"blur"));//获得仿射变换后的patch
//if (mxGetM(prhs[1])!=iHEIGHT) { mexPrintf("fern: wrong input image.\n"); return; }
// bbox indexes
double *idx = mxGetPr(prhs[2]);//bbp所对应的列索引
int numIdx = mxGetM(prhs[2]) * mxGetN(prhs[2]);//1 X (<=10)
// minimal variance
double minVar = *mxGetPr(prhs[3]);//minVar=0
if (minVar > 0) {
iimg(input,IIMG,iHEIGHT,iWIDTH);//返回IIMG,是图像进行矩形积分后的结果(运行不到这)
iimg2(input,IIMG2,iHEIGHT,iWIDTH);//返回IIMG,是图像进行矩形平方积分后的结果(运行不到这)
}
// output patterns
//创建输出矩阵:10X(<=10)
plhs[0] = mxCreateDoubleMatrix(nTREES,numIdx,mxREAL);
double *patt = mxGetPr(plhs[0]);
//创建输出矩阵:1 X(<=10)
plhs[1] = mxCreateDoubleMatrix(1,numIdx,mxREAL);
double *status = mxGetPr(plhs[1]);
for (int j = 0; j < numIdx; j++) {//(<=10)
if (minVar > 0) {
double bboxvar = bbox_var_offset(IIMG,IIMG2,BBOX+j*BBOX_STEP);//BBOX保存网格数据索引等数据(运行不到这)
//E(p^2)-E^2(p)
if (bboxvar < minVar) { continue; }(运行不到这)
}
status[j] = 1;
double *tPatt = patt + j*nTREES;
for (int i = 0; i < nTREES; i++) {//10
//返回对应gridbox及对应树的13位有效的像素比较码
tPatt[i] = (double) measure_tree_offset(blur, idx[j]-1, i);//idx:bbp
}
}
return;
进入measure_tree_offset
int index = 0;
int *bbox = BBOX + idx_bbox*BBOX_STEP;//BBOX存储gridbox的索引等信息BBOX_STEP=7(因为grid的行为6)
//OFF + bbox[5],该表达式表示该gridbox的特征点信息在OFF的偏移,bbox[5]表示图像横向上多少个网格点 //OFF = create_offsets(s,x);//记录各个特征点在各种尺度下box中的具体位置
int *off = OFF + bbox[5] + idx_tree*2*nFEAT;//OFF存储特征点在各个尺度框下的分布位置等
for (int i=0; i<nFEAT; i++) {//13
index<<=1;
//off[0]为特征点的x坐标,off[1]为特征点的y坐标,bbox[0]为该gridbox在图画中的位置
int fp0 = img[off[0]+bbox[0]];
int fp1 = img[off[1]+bbox[0]];
if (fp0>fp1) { index |= 1;}//两个像素点比较并置位相应CODE
off += 2;//移到下一个点对
}
return index; 看完上面,真的有点累啊,算了,把负例也看下好了,简单看了下,代码不算太多:
// Correct initial bbox
tld.bb(:,1) = bbP(1:4,:);//最靠近BBOX的的gridbox
// Variance threshold
tld.var = var(pEx(:,1)) / 2;//var计算方差,这里即求各个数平方和的平均数
// disp([‘Variance : ‘ num2str(tld.var)]);
// Generate Negative Examples
//nx:patch variance 挑出合适的patches,并提取fern特征赋给nx,
//nEx返回一个225x100(nEx)的矩阵,列向量各元素值为原像素值减去像素均值,100为num_patches
//输入:
//overlap:一维行向量,记录GRID中的各个gridbox与用户目标标定框的重叠率
//输出:
//nx:patch variance 挑出合适的patches,并提取fern特征赋给nx
//nEx:一个225x100(nEx)的矩阵,列向量各元素值为原像素值减去像素均值,100为num_patches
[nX,nEx] = tldGenerateNegativeData(tld,overlap,tld.img{1});再进
// Measure patterns on all bboxes that are far from initial bbox //opt.n_par = struct(‘overlap‘,0.2,‘num_patches‘,100); idxN = find(overlap<tld.n_par.overlap);//overlap < 0.2 [nX,status] = fern(5,img,idxN,tld.var/2);//此函数通过patch variance剔除一批,剩下的进入fern特征码提取 idxN = idxN(status==1); // bboxes far and with big variance,注意C++代码中的status[j] = 1;一句 nX = nX(:,status==1);//选出进入第二级分类器的负样本 // Randomly select ‘num_patches‘ bboxes and measure patches idx = randvalues(1:length(idxN),tld.n_par.num_patches);//‘num_patches‘,100应该是随机取出100个gridbox bb = tld.grid(:,idxN(idx)); nEx = tldGetPattern(img,bb,tld.model.patchsize);//不复注解再进入fern(5,...)因为有tld.var/2,执行稍有不同,请参见上面就行。
好了,至此已经为分类器的训练产生了可用的正例和负例了。
TLD matlab源代码阅读(2),布布扣,bubuko.com
原文地址:http://blog.csdn.net/xuchenglu/article/details/26161675