码迷,mamicode.com
首页 > 其他好文 > 详细

TLD matlab源代码阅读(2)

时间:2014-05-20 16:47:18      阅读:474      评论:0      收藏:0      [点我收藏+]

标签:计算机视觉   tld   matlab   源代码   

今天继续,下面是开始要生成正负例来训练分类器了,首先:

// TRAIN DETECTOR ==========================================================

// Initialize structures
tld.imgsize = size(tld.source.im0.input);
//为fern准备的训练集
tld.X       = cell(1,length(tld.source.idx)); //training data for fern
tld.Y       = cell(1,length(tld.source.idx)); 
%为nearest neighbor准备的训练集
tld.pEx     = cell(1,length(tld.source.idx)); // training data for NN
tld.nEx     = cell(1,length(tld.source.idx));
//输入:
//tld.source.bb:用户目标标定框
//tld.grid: 生成的gridbox信息矩阵
//输出:
// overlap一维行向量,记录GRID中的各个gridbox与用户目标标定框的重叠率
overlap     = bb_overlap(tld.source.bb,tld.grid); 
进入bb_overlap来看一下:

			// Input
			double *bb1 = mxGetPr(prhs[0]); int M1 = mxGetM(prhs[0]); int N1 = mxGetN(prhs[0]);//4X1
			double *bb2 = mxGetPr(prhs[1]); int M2 = mxGetM(prhs[1]); int N2 = mxGetN(prhs[1]);//6Xn(n表示gridbox总数)

			// Output
            
            if (N1 == 0 || N2 == 0) {
                N1 = 0; N2 = 0;
            }
			plhs[0] = mxCreateDoubleMatrix(N1, N2, mxREAL);//创建输出矩阵,1Xgridbox的数量
			double *out = mxGetPr(plhs[0]);

			for (int j = 0; j < N2; j++) {//gridbox的数量
				for (int i = 0; i < N1; i++) {//1
					*out++ = bb_overlap(bb1 + M1*i, bb2 + M2*j);//计算重叠度
				}
			}

double bb_overlap(double *bb1, double *bb2) {

	if (bb1[0] > bb2[2]) { return 0.0; }//判断如果两个矩形没有相交部分,重叠度就为0;
	if (bb1[1] > bb2[3]) { return 0.0; }
	if (bb1[2] < bb2[0]) { return 0.0; }
	if (bb1[3] < bb2[1]) { return 0.0; }
	
	double colInt =  min(bb1[2], bb2[2]) - max(bb1[0], bb2[0]) + 1;//求相交矩形的宽和高
	double rowInt =  min(bb1[3], bb2[3]) - max(bb1[1], bb2[1]) + 1;

	double intersection = colInt * rowInt;//相交面积
	double area1 = (bb1[2]-bb1[0]+1)*(bb1[3]-bb1[1]+1);//分别求两个输入矩形的面积
	double area2 = (bb2[2]-bb2[0]+1)*(bb2[3]-bb2[1]+1);
	return intersection / (area1 + area2 - intersection);//求重叠率
}
再接着

//输入:
//tld.img{1}.input:输入图像,第一帧
//tld.bb(:,1):用户目标标定框
//输出:
//tld.target:目标标定框中特定的图像
tld.target = img_patch(tld.img{1}.input,tld.bb(:,1));
进入img_patch,这个函数比较庞大,先看其中用到的一部分:

    //如果4个坐标值都是整数
    if sum(abs(round(bb)-bb))==0
        L = max([1 bb(1)]);
        T = max([1 bb(2)]);
        R = min([size(img,2) bb(3)]);
        B = min([size(img,1) bb(4)]);
        patch = img(T:B,L:R);//在不超过画面尺寸和小于1x1的情况下,取出BB框出的画面
        
        % Sub-pixel accuracy
    else
        
        cp = 0.5 * [bb(1)+bb(3); bb(2)+bb(4)]-1;//bbox的中心坐标 center point
        %[1 0 -cp(1)]
        %[0 1 -cp(2)]
        %[0 0 1     ]
        H = [1 0 -cp(1); 0 1 -cp(2); 0 0 1];
        
        bbW = bb(3,:)-bb(1,:);//宽
        bbH = bb(4,:)-bb(2,:);//高
        if bbW <= 0 || bbH <= 0
            patch = [];
            return;
        end
        box = [-bbW/2 bbW/2 -bbH/2 bbH/2];
        
        if size(img,3) == 3//如果图像有三个通道,即判断图片是否为真彩色
            for i = 1:3
                P = warp(img(:,:,i),inv(H),box);
                patch(:,:,i) = uint8(P);
            end
        else
            patch = warp(img,inv(H),box);//inv(H)=[1 0 cp(1); 0 1 cp(2); 0 0 1];平移变换
            patch = uint8(patch);
        end

    end
上面的函数功能就是对BB区域的图像提取,但是有针对坐标为整数和小数的处理,这里应该只用到整数部分,但至于小数坐标的处理跟踪了一下代码,发现是对图像作了平移的仿射变换,但是至于为什么要这么做,我也不理解,感觉直接舍去小数部分问题应该也不大吧(个人理解,没有看懂)。

好了下面开始产生正训练样本了:

//输入:
//overlap:一维行向量,记录GRID中的各个gridbox与用户目标标定框的重叠率
//tld.p_par_init:opt.p_par_init= struct(‘num_closest‘,10,‘num_warps‘,20,‘noise‘,5,‘angle‘,20,‘shift‘,0.02,‘scale‘,0.02);
//输出:
//pX:10 X length(idxP)*20 (length(idxP)<=10,20为‘num_warps‘,20)的矩阵列向量表示一个gridbox的10棵树上的13位有效的code
//pEx:225X1的列向量,各元素值为原像素值减去像素均值
//bbP:最靠近BBOX的的gridbox,列向量表示该box的4个顶点
[pX,pEx,bbP] = tldGeneratePositiveData(tld,overlap,tld.img{1},tld.p_par_init);
pY = ones(1,size(pX,2));%1 X length(idxP)*20
这个函数也是比较大的,但是还要耐心的往下看啊

pX   = [];
pEx  = [];

// Get closest bbox
[~,idxP] = max(overlap);//表示行不管,只取列,整个表达式表示最大overlap所对应的列,一维
bbP0 =  tld.grid(1:4,idxP);//1~4表示矩阵的4个顶点分布在四行,此取最靠近BBOX的的gridbox

// Get overlapping bboxes
idxP = find(overlap > 0.6);//返回overlap > 0.6所对应的列索引
if length(idxP) > p_par.num_closest//如果overlap > 0.6的gridbox数大于10
    [~,sIdx] = sort(overlap(idxP),‘descend‘);    //降序排序 
    idxP = idxP(sIdx(1:p_par.num_closest));//取前p_par.num_closest个最大重叠度的bboxes所在的列
end
bbP  = tld.grid(:,idxP);//取出10个最大重叠度的gridboxes
if isempty(bbP), return; end

% Get hull
bbH  = bb_hull(bbP);%得到能包围所有bbp中boxes的最小矩形
cols = bbH(1):bbH(3);
rows = bbH(2):bbH(4);

im1 = im0;
//返回一个225x1(pEx)的列向量,各元素值为原像素值减去像素均值
pEx = tldGetPattern(im1,bbP0,tld.model.patchsize);//
if tld.model.fliplr
pEx = [pEx tldGetPattern(im1,bbP0,tld.model.patchsize,1)];
end
//返回20个正例
for i = 1:p_par.num_warps//p_par.num_warps=20
    if i > 1
        randomize = rand; // Sets the internal randomizer to the same state
        //patch_input = img_patch(im0.input,bbH,randomize,p_par);
        //返回将画面进行仿射变换后的patch
        patch_blur = img_patch(im0.blur,bbH,randomize,p_par);//bbH包围所有bbp中bboxes的最小矩形
        //这个很重要,保证在C调用里的偏移的起始地址可以是一样的
        im1.blur(rows,cols) = patch_blur;//把仿射变换后的图像放到原图像对应的位置(能包围所有bbp中boxes的最小矩形)
        //im1.input(rows,cols) = patch_input;
    end
    
    // Measures on blured image
    //单次返回10Xlength(idxP)的矩阵,列向量表示一个gridbox的10棵树上的13位code,
    //最后返回10Xlength(idxP)*20的矩阵
    pX  = [pX fern(5,im1,idxP,0)];//idxP :overlap > 0.6所对应的列索引
    
    // Measures on input image
    //pEx(:,i) = tldGetPattern(im1,bbP0,tld.model.patchsize);
    //pEx = [pEx tldGetPattern(im1,tld.grid(1:4,idxP),tld.model.patchsize)];
    
end
当然这个函数是不能这么草草了事的,还有三大函数需要进一步细看:

1.tldGetPattern()

nBB = size(bb,2);//得到bbp0(最靠近BBOX的gridbox)的列,值为1
pattern = zeros(prod(patchsize),nBB);//15*15 X 1 矩阵,返回矩阵
if ~exist(‘flip‘,‘var‘)
    flip= 0;
end

// for every bounding box
for i = 1:nBB//1
    
    // sample patch
    patch = img_patch(img.input,bb(:,i));//取出对应框中的图像
    
    // flip if needed
    if flip
        patch = fliplr(patch);
    end
    
    // normalize size to ‘patchsize‘ and nomalize intensities to ZMUV
    //返回一个225x1的列向量,各元素值为原像素值减去像素均值
    pattern(:,i) = tldPatch2Pattern(patch,patchsize);//patch压缩变换到patchsize大小,然后将各个元素减去元素均值
end
切入到tldPatch2Pattern看一眼:

patch   = imresize(patch,patchsize); // ‘bilinear‘ is faster
pattern = double(patch(:));//此时变成225X1的矩阵
pattern = pattern - mean(pattern);//mean(pattern)求各列向量的均值
2.img_patch()(4个传参)

    rand(‘state‘,randomize);
    randn(‘state‘,randomize);
    //‘noise‘,5,‘angle‘,20,‘shift‘,0.02,‘scale‘,0.02;
    NOISE = p_par.noise;
    ANGLE = p_par.angle;
    SCALE = p_par.scale;
    SHIFT = p_par.shift;
    
    cp  = bb_center(bb)-1;//HULL矩形的中心
    Sh1 = [1 0 -cp(1); 0 1 -cp(2); 0 0 1];
    
    sca = 1-SCALE*(rand-0.5);%0.99~1.01
    //[0.99~1.01                ]
    //[          0.99~1.01      ]
    //[                      1  ]
    Sca = diag([sca sca 1]);
    
    ang = 2*pi/360*ANGLE*(rand-0.5);//-10 ~ 10度 实际为弧度
    ca = cos(ang);
    sa = sin(ang);
    Ang = [ca, -sa; sa, ca];
    Ang(end+1,end+1) = 1;
    
    shR  = SHIFT*bb_height(bb)*(rand-0.5);//-0.01~1.01*bb_height(bb)
    shC  = SHIFT*bb_width(bb)*(rand-0.5);//-0.01~1.01*bb_width(bb)
    Sh2 = [1 0 shC; 0 1 shR; 0 0 1];
    
    bbW = bb_width(bb)-1;
    bbH = bb_height(bb)-1;
    box = [-bbW/2 bbW/2 -bbH/2 bbH/2];
    
    H     = Sh2*Ang*Sca*Sh1;
    bbsize = bb_size(bb);
    patch = uint8(warp(img,inv(H),box) + NOISE*randn(bbsize(1),bbsize(2)));//给图像造成5的高斯噪声
以上的代码注释就少了,因为全都是关于仿射变换的,具体可以参看仿射变换,大体就是作者在论文中提到的(shift+-1%,scale +-1%, in-plane rotation +-10度)用来提高训练样本的多样性。

3.fern()(第一个传参为5,获得模式)

		unsigned char *input = (unsigned char*) mxGetPr(mxGetField(prhs[1],0,"input"));
		unsigned char *blur  = (unsigned char*) mxGetPr(mxGetField(prhs[1],0,"blur"));//获得仿射变换后的patch

		//if (mxGetM(prhs[1])!=iHEIGHT) { mexPrintf("fern: wrong input image.\n"); return; }

		// bbox indexes
		double *idx = mxGetPr(prhs[2]);//bbp所对应的列索引
		int numIdx = mxGetM(prhs[2]) * mxGetN(prhs[2]);//1 X (<=10)

		// minimal variance
		double minVar = *mxGetPr(prhs[3]);//minVar=0
		if (minVar > 0) {
			iimg(input,IIMG,iHEIGHT,iWIDTH);//返回IIMG,是图像进行矩形积分后的结果(运行不到这)
			iimg2(input,IIMG2,iHEIGHT,iWIDTH);//返回IIMG,是图像进行矩形平方积分后的结果(运行不到这)
		}

		// output patterns
        //创建输出矩阵:10X(<=10)
		plhs[0] = mxCreateDoubleMatrix(nTREES,numIdx,mxREAL);
		double *patt = mxGetPr(plhs[0]);
        //创建输出矩阵:1 X(<=10)
		plhs[1] = mxCreateDoubleMatrix(1,numIdx,mxREAL);
		double *status = mxGetPr(plhs[1]);

		for (int j = 0; j < numIdx; j++) {//(<=10)

			if (minVar > 0) {
				double bboxvar = bbox_var_offset(IIMG,IIMG2,BBOX+j*BBOX_STEP);//BBOX保存网格数据索引等数据(运行不到这)
                //E(p^2)-E^2(p)
				if (bboxvar < minVar) {	continue; }(运行不到这)
			}
			status[j] = 1;
			double *tPatt = patt + j*nTREES;
			for (int i = 0; i < nTREES; i++) {//10
                //返回对应gridbox及对应树的13位有效的像素比较码
				tPatt[i] = (double) measure_tree_offset(blur, idx[j]-1, i);//idx:bbp
			}
		}
		return;
进入measure_tree_offset

	int index = 0;
	int *bbox = BBOX + idx_bbox*BBOX_STEP;//BBOX存储gridbox的索引等信息BBOX_STEP=7(因为grid的行为6)
    //OFF + bbox[5],该表达式表示该gridbox的特征点信息在OFF的偏移,bbox[5]表示图像横向上多少个网格点
    //OFF = create_offsets(s,x);//记录各个特征点在各种尺度下box中的具体位置
	int *off = OFF + bbox[5] + idx_tree*2*nFEAT;//OFF存储特征点在各个尺度框下的分布位置等
	for (int i=0; i<nFEAT; i++) {//13
		index<<=1; 
        //off[0]为特征点的x坐标,off[1]为特征点的y坐标,bbox[0]为该gridbox在图画中的位置
		int fp0 = img[off[0]+bbox[0]];
		int fp1 = img[off[1]+bbox[0]];
		if (fp0>fp1) { index |= 1;}//两个像素点比较并置位相应CODE
		off += 2;//移到下一个点对
	}
	return index;	
看完上面,真的有点累啊,算了,把负例也看下好了,简单看了下,代码不算太多:

// Correct initial bbox
tld.bb(:,1) = bbP(1:4,:);//最靠近BBOX的的gridbox

// Variance threshold
tld.var = var(pEx(:,1)) / 2;//var计算方差,这里即求各个数平方和的平均数
// disp([‘Variance : ‘ num2str(tld.var)]);

// Generate Negative Examples
//nx:patch variance 挑出合适的patches,并提取fern特征赋给nx,
//nEx返回一个225x100(nEx)的矩阵,列向量各元素值为原像素值减去像素均值,100为num_patches
//输入:
//overlap:一维行向量,记录GRID中的各个gridbox与用户目标标定框的重叠率
//输出:
//nx:patch variance 挑出合适的patches,并提取fern特征赋给nx
//nEx:一个225x100(nEx)的矩阵,列向量各元素值为原像素值减去像素均值,100为num_patches
[nX,nEx] = tldGenerateNegativeData(tld,overlap,tld.img{1});
再进

// Measure patterns on all bboxes that are far from initial bbox
//opt.n_par = struct(‘overlap‘,0.2,‘num_patches‘,100);
idxN        = find(overlap<tld.n_par.overlap);//overlap < 0.2
[nX,status] = fern(5,img,idxN,tld.var/2);//此函数通过patch variance剔除一批,剩下的进入fern特征码提取
idxN        = idxN(status==1); // bboxes far and with big variance,注意C++代码中的status[j] = 1;一句
nX          = nX(:,status==1);//选出进入第二级分类器的负样本

// Randomly select ‘num_patches‘ bboxes and measure patches
idx = randvalues(1:length(idxN),tld.n_par.num_patches);//‘num_patches‘,100应该是随机取出100个gridbox
bb  = tld.grid(:,idxN(idx));
nEx = tldGetPattern(img,bb,tld.model.patchsize);//不复注解
再进入fern(5,...)因为有tld.var/2,执行稍有不同,请参见上面就行。

好了,至此已经为分类器的训练产生了可用的正例和负例了。

TLD matlab源代码阅读(2),布布扣,bubuko.com

TLD matlab源代码阅读(2)

标签:计算机视觉   tld   matlab   源代码   

原文地址:http://blog.csdn.net/xuchenglu/article/details/26161675

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!