有一天,王小子在遨游世界时,遇到了一场自然灾害。一个人孤独的在一个岛上,没有吃的没有喝的。在他饥寒交迫将要死亡时,死神来了。由于这个死神在成神之前是一个数学家,所以他有一个习惯,会和即死之人玩一个数学游戏,来决定是否将其灵魂带走。游戏规则是死神给王小子两个整数n(100<=n<=1000000),m(2<=m<=n),在1~n个数中,随机取m个数,问在这m个数中是否一定存在一个数是另一个数的倍数,是则回答“YES",否则”NO"。如果王小子回答正确,将有再活下去的机会。但是他很后悔以前没有好好学习数学,王小子知道你数学学得不错,请你救他一命。
100 80 100 20
YES NO
本题应用的是鸽笼原理,也叫抽屉原理。
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理。
AC码:
#include<stdio.h> int main() { int n,m; while(~scanf("%d%d",&n,&m)) { n=n/2+(n&1); printf("%s\n",m>n?"YES":"NO"); } return 0; }鸽笼原理应用:
1、从2、4、6、…、30这15个偶数中,至少任取几个数,其中一定有两个数之和是34?
答案: 9
2、从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12?
答案:13
3、 从1到20这20个数中,至少任取多少个数,必有两个数,其中一个数是另一个数的倍数?
答案:11
4、某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多?
答案:共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。
5、15个网球分成数量不同的4堆,数量最多的一堆至少有多少个球?
答案:此题实际是求出15可分拆多少种4个互不相同的整数之和,而15=1+2+3+9=1+2+4+8=1+2+5+7=1+3+4+7=1+3+5+6=2+3+4+6,所以最多一堆的球数可能是9、8、7、6,其中至少有6个。
整除问题
1、任取8个自然数,必有两个数的差是7的倍数。
解析:在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数。
2、对于任意的五个自然数,证明其中必有3个数的和能被3整除。
解析:
3、任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数.
解析:注意到这些数除以10的余数即个位数字,以0,1,…,9为标准制造10个抽屉,标以[0],[1],…,[9].若有两数落入同一抽屉,其差是10的倍数,只是仅有7个自然数,似不便运用抽屉原则,再作调整:[6],[7],[8],[9]四个抽屉分别与[4],[3],[2],[1]合并,则可保证至少有一个抽屉里有两个数,它们的和或差是10的
原文地址:http://blog.csdn.net/u012804490/article/details/26163025