具体的算法原理可以参考:
// define head function #ifndef PS_ALGORITHM_H_INCLUDED #define PS_ALGORITHM_H_INCLUDED #include <iostream> #include <string> #include "cv.h" #include "highgui.h" #include "cxmat.hpp" #include "cxcore.hpp" using namespace std; using namespace cv; void Show_Image(Mat&, const string &); #endif // PS_ALGORITHM_H_INCLUDED /* This program will generate "Glowing Edge" effect. */ #include "PS_Algorithm.h" #include <time.h> using namespace std; using namespace cv; int main(void) { string Img_name("4.jpg"); Mat Image_in; Image_in=imread(Img_name); Show_Image(Image_in, Img_name); Mat Image_out(Image_in.size(), CV_32FC3); Image_in.convertTo(Image_out, CV_32FC3); Mat Image_2(Image_in.size(), CV_32FC3); Image_in.convertTo( Image_2, CV_32FC3); Mat kernel; Point anchor; double delta; int ddepth; int kernel_size; ddepth=-1; anchor=Point(-1,-1); delta=0; kernel_size=3; Mat K_x; Mat K_y; K_x=Mat::zeros(kernel_size, kernel_size, CV_32F); K_y=Mat::zeros(kernel_size, kernel_size, CV_32F); float p,q; p=3; q=0; K_x.at<float>(0,0)=-1; K_x.at<float>(0,1)=0; K_x.at<float>(0,2)=1; K_x.at<float>(1,0)=-p; K_x.at<float>(1,1)=q; K_x.at<float>(1,2)=p; K_x.at<float>(2,0)=-1; K_x.at<float>(2,1)=0; K_x.at<float>(2,2)=1; K_y.at<float>(0,0)=-1; K_y.at<float>(0,1)=-p; K_y.at<float>(0,2)=-1; K_y.at<float>(1,0)=0; K_y.at<float>(1,1)=q; K_y.at<float>(1,2)=0; K_y.at<float>(2,0)=1; K_y.at<float>(2,1)=p; K_y.at<float>(2,2)=1; Mat Image_x(Image_in.size(), CV_32FC3); Mat Image_y(Image_in.size(), CV_32FC3); cv::filter2D(Image_2, Image_x, ddepth, K_x); cv::filter2D(Image_2, Image_y, ddepth, K_y); float alpha=0.5; Image_out=alpha*abs(Image_x)+(1-alpha)*abs(Image_y); Image_out=Image_out/255; Show_Image(Image_out, "out.jpg"); imwrite("out.jpg", Image_out*255); waitKey(); cout<<"All is well."<<endl; } #include "PS_Algorithm.h" #include <iostream> #include <string> using namespace std; using namespace cv; void Show_Image(Mat& Image, const string& str) { namedWindow(str.c_str(),CV_WINDOW_AUTOSIZE); imshow(str.c_str(), Image); }
效果图:
原文地址:http://blog.csdn.net/matrix_space/article/details/40403411