标签:bzoj codechef link-cut-tree 主席树 可持久化线段树
题目大意:N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数。
思路:看到了wulala的题解,这里就直接粘过来了。
葱娘说这是一个很巧妙的题。。
有一个比较猎奇的做法:首先把边依次加到图中,若当前这条边与图中的边形成了环,那么把这个环中最早加进来的边弹出去
并将每条边把哪条边弹了出去记录下来:ntr[i] = j,特别地,要是没有弹出边,ntr[i] = 0;
这个显然是可以用LCT来弄的对吧。
然后对于每个询问,我们的答案就是对l~r中ntr小于l的边求和,并用n减去这个值
正确性可以YY一下:
如果一条边的ntr >= l,那么显然他可以与从l ~ r中的边形成环,那么它对答案没有贡献
反之如果一条边的ntr < l那么它与从l ~ r中的边是不能形成环的,那么他对答案的贡献为-1
对于查询从l ~ r中有多少边的ntr小于l,我反正是用的函数式线段树
看了题解才会做的人伤不起啊。。。
做法已经很详细了,就直接贴代码了。
CODE:
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define INF 0x3f3f3f3f #define MAX 200010 #define RANGE 7000010 using namespace std; struct Edge{ int x,y; }edge[MAX]; struct SplayTree{ SplayTree *son[2],*father; int val,_min; bool reverse; SplayTree(int _); bool Check() { return father->son[1] == this; } void Reverse() { reverse ^= 1; swap(son[0],son[1]); } void PushDown() { if(father->son[0] == this || father->son[1] == this) father->PushDown(); if(reverse) { son[0]->Reverse(); son[1]->Reverse(); reverse = false; } } void PushUp() { _min = min(son[0]->_min,son[1]->_min); _min = min(_min,val); } }none(INF),*nil = &none,*tree[MAX << 1]; SplayTree:: SplayTree(int _) { val = _min = _; son[0] = son[1] = father = nil; reverse = false; } int points,edges,asks; int type,last_ans; int ntr[MAX]; inline void Rotate(SplayTree *a,bool dir) { SplayTree *f = a->father; f->PushDown(),a->PushDown(); f->son[!dir] = a->son[dir]; f->son[!dir]->father = f; a->son[dir] = f; if(f->father->son[0] == f || f->father->son[1] == f) f->father->son[f->Check()] = a; a->father = f->father; f->father = a; f->PushUp(); } inline void Splay(SplayTree *a) { a->PushDown(); while(a->father->son[0] == a || a->father->son[1] == a) { SplayTree *f = a->father; if(f->father->son[0] != f && f->father->son[1] != f) Rotate(a,!a->Check()); else if(!f->Check()) { if(!a->Check()) Rotate(a->father,true),Rotate(a,true); else Rotate(a,false),Rotate(a,true); } else { if(a->Check()) Rotate(a->father,false),Rotate(a,false); else Rotate(a,true),Rotate(a,false); } } a->PushUp(); } inline void Access(SplayTree *a) { SplayTree *temp = nil; while(a != nil) { Splay(a); a->son[1] = temp; a->PushUp(); temp = a; a = a->father; } } inline SplayTree *FindRoot(SplayTree *a) { while(a->father != nil) a = a->father; return a; } inline void ToRoot(SplayTree *a) { Access(a); Splay(a); a->Reverse(); } inline void Link(SplayTree *x,SplayTree *y) { ToRoot(y); y->father = x; } inline void Cut(SplayTree *x,SplayTree *y) { ToRoot(x); Access(y); Splay(y); x->father = nil; y->son[0] = nil; y->PushUp(); } inline void Insert(const Edge &e,int p) { if(e.x == e.y) { ntr[p] = p; return ; } SplayTree *fx = FindRoot(tree[e.x]),*fy = FindRoot(tree[e.y]); if(fx == fy) { ToRoot(tree[e.x]); Access(tree[e.y]); Splay(tree[e.y]); int _min = tree[e.y]->_min; ntr[p] = _min; Cut(tree[edge[_min].x],tree[points + _min]); Cut(tree[edge[_min].y],tree[points + _min]); } tree[points + p] = new SplayTree(p); Link(tree[points + p],tree[e.x]); Link(tree[points + p],tree[e.y]); } struct SegTree{ SegTree *son[2]; int cnt; void *operator new(size_t,SegTree *_,SegTree *__,int ___); }*seg_tree[MAX],mempool[RANGE],*C = mempool; void *SegTree:: operator new(size_t,SegTree *_,SegTree *__,int ___) { C->son[0] = _; C->son[1] = __; C->cnt = ___; return C++; } SegTree *Modify(SegTree *last,int l,int r,int x) { if(l == r) return new(NULL,NULL,last->cnt + 1)SegTree; int mid = (l + r) >> 1; if(x <= mid) return new(Modify(last->son[0],l,mid,x),last->son[1],last->cnt + 1)SegTree; return new(last->son[0],Modify(last->son[1],mid + 1,r,x),last->cnt + 1)SegTree; } int Ask(SegTree *contrast,SegTree *now,int l,int r,int x,int y) { if(l == x && y == r) return now->cnt - contrast->cnt; int mid = (l + r) >> 1; if(y <= mid) return Ask(contrast->son[0],now->son[0],l,mid,x,y); if(x > mid) return Ask(contrast->son[1],now->son[1],mid + 1,r,x,y); int left = Ask(contrast->son[0],now->son[0],l,mid,x,mid); int right = Ask(contrast->son[1],now->son[1],mid + 1,r,mid + 1,y); return left + right; } int main() { cin >> points >> edges >> asks >> type; for(int i = 1; i <= points; ++i) tree[i] = new SplayTree(INF); for(int i = 1; i <= edges; ++i) { scanf("%d%d",&edge[i].x,&edge[i].y); Insert(edge[i],i); } seg_tree[0] = new(C,C,0)SegTree; for(int i = 1; i <= edges; ++i) seg_tree[i] = Modify(seg_tree[i - 1],0,edges,ntr[i]); for(int x,y,i = 1; i <= asks; ++i) { scanf("%d%d",&x,&y); if(type) x ^= last_ans,y ^= last_ans; if(x > y) swap(x,y); last_ans = points - Ask(seg_tree[x - 1],seg_tree[y],0,edges,0,x - 1); printf("%d\n",last_ans); } return 0; }
BZOJ 3514 Codechef MARCH14 GERALD07加强版 LCT+主席树
标签:bzoj codechef link-cut-tree 主席树 可持久化线段树
原文地址:http://blog.csdn.net/jiangyuze831/article/details/41694643