标签:style blog http io ar color os sp for
思路:推推公式就发现其实就是求一个圆和多边形面积的交
代码:
#include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h> #include<algorithm> const double eps = 1e-8; const double pi = acos(-1.0); int dcmp(double x) { if(x > eps) return 1; return x < -eps ? -1 : 0; } struct Point { double x, y; Point(){x = y = 0;} Point(double a, double b) {x = a, y = b;} inline void read() {scanf("%lf%lf", &x, &y);} inline Point operator-(const Point &b)const {return Point(x - b.x, y - b.y);} inline Point operator+(const Point &b)const {return Point(x + b.x, y + b.y);} inline Point operator*(const double &b)const {return Point(x * b, y * b);} inline double dot(const Point &b)const {return x * b.x + y * b.y;} inline double cross(const Point &b, const Point &c)const {return (b.x - x) * (c.y - y) - (c.x - x) * (b.y - y);} inline double Dis(const Point &b)const {return sqrt((*this - b).dot(*this - b));} inline bool InLine(const Point &b, const Point &c)const//三点共线 {return !dcmp(cross(b, c));} inline bool OnSeg(const Point &b, const Point &c)const//点在线段上,包括端点 {return InLine(b, c) && (*this - c).dot(*this - b) < eps;} }; inline double min(double a, double b) {return a < b ? a : b;} inline double max(double a, double b) {return a > b ? a : b;} inline double Sqr(double x) {return x * x;} inline double Sqr(const Point &p) {return p.dot(p);} Point LineCross(const Point &a, const Point &b, const Point &c, const Point &d) { double u = a.cross(b, c), v = b.cross(a, d); return Point((c.x * v + d.x * u) / (u + v), (c.y * v + d.y * u) / (u + v)); } double LineCrossCircle(const Point &a, const Point &b, const Point &r, double R, Point &p1, Point &p2) { Point fp = LineCross(r, Point(r.x + a.y - b.y, r.y + b.x - a.x), a, b); double rtol = r.Dis(fp); double rtos = fp.OnSeg(a, b) ? rtol : min(r.Dis(a), r.Dis(b)); double atob = a.Dis(b); double fptoe = sqrt(R * R - rtol * rtol) / atob; if(rtos > R - eps) return rtos; p1 = fp + (a - b) * fptoe; p2 = fp + (b - a) * fptoe; return rtos; } double SectorArea(const Point &r, const Point &a, const Point &b, double R) //不大于180度扇形面积,r->a->b逆时针 { double A2 = Sqr(r - a), B2 = Sqr(r - b), C2 = Sqr(a - b); return R * R * acos((A2 + B2 - C2) * 0.5 / sqrt(A2) / sqrt(B2)) * 0.5; } double TACIA(const Point &r, const Point &a, const Point &b, double R) //TriangleAndCircleIntersectArea,逆时针,r为圆心 { double adis = r.Dis(a), bdis = r.Dis(b); if(adis < R + eps && bdis < R + eps) return r.cross(a, b) * 0.5; Point ta, tb; if(r.InLine(a, b)) return 0.0; double rtos = LineCrossCircle(a, b, r, R, ta, tb); if(rtos > R - eps) return SectorArea(r, a, b, R); if(adis < R + eps) return r.cross(a, tb) * 0.5 + SectorArea(r, tb, b, R); if(bdis < R + eps) return r.cross(ta, b) * 0.5 + SectorArea(r, a, ta, R); return r.cross(ta, tb) * 0.5 + SectorArea(r, a, ta, R) + SectorArea(r, tb, b, R); } const int N = 505; Point p[N]; double SPICA(int n, Point r, double R)//SimplePolygonIntersectCircleArea { int i; double res = 0, if_clock_t; for(i = 0; i < n; ++ i) { if_clock_t = dcmp(r.cross(p[i], p[(i + 1) % n])); if(if_clock_t < 0) res -= TACIA(r, p[(i + 1) % n], p[i], R); else res += TACIA(r, p[i], p[(i + 1) % n], R); } return fabs(res); } int n; double xa, ya, xb, yb, k; int main() { int cas = 0; while (~scanf("%d%lf", &n, &k)) { for (int i = 0; i < n; i++) p[i].read(); scanf("%lf%lf%lf%lf", &xa, &ya, &xb, &yb); Point o = Point(-(xb - k * k * xa) / (k * k - 1), -(yb - k * k * ya) / (k * k - 1)); double r = (xb * xb + yb * yb - k * k * xa * xa - k * k * ya * ya) / (k * k - 1); r += (o.x * o.x + o.y * o.y); r = sqrt(r); printf("Case %d: %.10lf\n", ++cas, SPICA(n, o, r)); } return 0; }
广州现场赛D题Signal Interference(计算几何)
标签:style blog http io ar color os sp for
原文地址:http://blog.csdn.net/accelerator_/article/details/41696351