标签:数据结构
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 13771 | Accepted: 5045 |
Description
You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.
Input
The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000
≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two
integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the
query.
The last test case is followed by a line containing a single 0.
Output
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
Sample Input
10 3 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0
Sample Output
1 4 3
Source
#include<stdio.h> #define MAX_N 500000 struct node{ int l; int r; int max; }; struct msg{ int value; int start; int end; }; node tree[3*MAX_N]; int a[MAX_N+5]; int b[MAX_N+5]; int c[MAX_N+5]; msg inv[MAX_N+5]; int max(int x,int y){ if(x>y) return x; else return y; } void swap(int &s,int &e){ s=s^e; e=s^e; s=s^e; } void build_tree(int left,int right,int root){ tree[root].l=left; tree[root].r=right; if(left==right){ tree[root].max=b[left]; return; } int mid=(left+right)/2; build_tree(left,mid,root*2); build_tree(mid+1,right,root*2+1); tree[root].max=max(tree[root*2].max,tree[root*2+1].max); } int find_max(int left,int right,int root){ if(left==tree[root].l&&right==tree[root].r) return tree[root].max; int mid=(tree[root].l+tree[root].r)/2; if(right<=mid) return find_max(left,right,root*2); else if(left>mid) return find_max(left,right,root*2+1); else return max(find_max(left,mid,root*2),find_max(mid+1,right,root*2+1)); } int main(){ int n,m,i,len,inv_len,s,e; while(scanf("%d",&n)!=EOF){ if(n==0) break; scanf("%d",&m); for(i=1;i<=n;i++) scanf("%d",&a[i]); len=0,inv_len=0; b[++len]=1; c[1]=1; inv[++inv_len].value=a[1]; inv[inv_len].start=1; for(i=2;i<=n;i++){ if(a[i]==a[i-1]){ b[len]++; c[i]=c[i-1]; } else{ b[++len]=1; inv[inv_len].end=i-1; inv[++inv_len].value=a[i]; inv[inv_len].start=i; c[i]=c[i-1]+1; } } inv[inv_len].end=n; build_tree(1,len,1); for(i=1;i<=m;i++){ scanf("%d%d",&s,&e); if(s>e) swap(s,e); int q1=c[s]; int q2=c[e]; int ans; if(q2-q1==1){ int max1=inv[q1].end-s+1; int max2=e-inv[q2].start+1; ans=max(max1,max2); } else if(q2-q1==0){ ans=e-s+1; } else{ int max1=inv[q1].end-s+1; int max2=e-inv[q2].start+1; int max3=find_max(c[inv[q1].end+1],c[inv[q2].start-1],1); ans=max(max(max1,max2),max3); } printf("%d\n",ans); } } return 0; }
POJ 3368 线段树,给定区间求连续不降序列的在该区间内出现最多的数
标签:数据结构
原文地址:http://blog.csdn.net/xieshimao/article/details/41724521