标签:bzoj dijkstra heap+dijkstra 堆优化 最短路
题目大意:最短路。
思路:最短路。
贴一份比较高效的堆优化Dij模板吧。
CODE:
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define _MAX 1000010 #define MAX 10000010 using namespace std; #define min(a,b) ((a) < (b) ? a:b) long long f[_MAX]; struct Heap{ int num[_MAX],pos[_MAX],size; void PushUp(int p) { while(p > 1) { if(f[num[p]] < f[num[p >> 1]]) { swap(num[p],num[p >> 1]); swap(pos[num[p]],pos[num[p >> 1]]); p >>= 1; } else break; } } void Insert(long long x) { num[++size] = x; pos[x] = size; PushUp(size); } void Pop() { pos[num[1]] = 0; num[1] = num[size--]; if(size) pos[num[1]] = 1; int now = 2; while(now < size) { if(f[num[now + 1]] < f[num[now]]) ++now; if(f[num[now]] < f[num[now >> 1]]) { swap(num[now],num[now >> 1]); swap(pos[num[now]],pos[num[now >> 1]]); now <<= 1; } else break; } } }heap; int points,edges; long long T,rxa,rxc,rya,ryc,rp; int head[_MAX],total; int next[MAX],aim[MAX],length[MAX]; inline void Add(int x,int y,int len) { next[++total] = head[x]; aim[total] = y; length[total] = len; head[x] = total; } void Dijkstra() { memset(f,0x3f,sizeof(f)); f[1] = 0; for(int i = 1; i <= points; ++i) heap.Insert(i); while(heap.size) { int x = heap.num[1]; heap.Pop(); for(int i = head[x]; i; i = next[i]) if(f[aim[i]] > f[x] + length[i]) f[aim[i]] = f[x] + length[i],heap.PushUp(heap.pos[aim[i]]); } } int main() { cin >> points >> edges; cin >> T >> rxa >> rxc >> rya >> ryc >> rp; int x = 0,y = 0,z = 0; int a,b; for(int i = 1; i <= T; ++i) { x = ((long long)x * rxa + rxc) % rp; y = ((long long)y * rxa + rxc) % rp; a = min(x % points + 1,y % points + 1); b = y % points + 1; if(a != b) Add(a,b,1e8 - 100 * a); } for(int i = T + 1; i <= edges; ++i) { scanf("%d%d%d",&x,&y,&z); Add(x,y,z); } Dijkstra(); cout << f[points] << endl; return 0; }
BZOJ 3040 最短路(road) 堆优化Dijkstra
标签:bzoj dijkstra heap+dijkstra 堆优化 最短路
原文地址:http://blog.csdn.net/jiangyuze831/article/details/41729905