码迷,mamicode.com
首页 > 其他好文 > 详细

[家里蹲大学数学杂志]第35期四川大学2011年数学分析考研试题参考解答

时间:2014-05-22 05:35:24      阅读:221      评论:0      收藏:0      [点我收藏+]

标签:style   class   c   code   ext   color   

1计算.

(1)limbubuko.com,布布扣nbubuko.com,布布扣(n+n+2nbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?nbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣 .

解答:

原极限bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣limbubuko.com,布布扣nbubuko.com,布布扣n+2nbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣n+n+2nbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+nbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣limbubuko.com,布布扣nbubuko.com,布布扣1+2bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣1+1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣+2bubuko.com,布布扣nbubuko.com,布布扣3/2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(2)limbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣2nbubuko.com,布布扣k=1bubuko.com,布布扣1bubuko.com,布布扣n+kbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 .

解答:

原极限bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣limbubuko.com,布布扣nbubuko.com,布布扣1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣k=1bubuko.com,布布扣2nbubuko.com,布布扣1bubuko.com,布布扣1+k/nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣0bubuko.com,布布扣1bubuko.com,布布扣1+xbubuko.com,布布扣bubuko.com,布布扣dxbubuko.com,布布扣ln3.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(3)若 limbubuko.com,布布扣xbubuko.com,布布扣(1+1bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣axbubuko.com,布布扣=limbubuko.com,布布扣x0bubuko.com,布布扣arccosx+1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣sinxbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 , 求 abubuko.com,布布扣 .

解答: 由

limbubuko.com,布布扣xbubuko.com,布布扣(1+1bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣axbubuko.com,布布扣=ebubuko.com,布布扣abubuko.com,布布扣,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
limbubuko.com,布布扣x0bubuko.com,布布扣arccosx+1bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣sinxbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣arccos(limbubuko.com,布布扣x0bubuko.com,布布扣xbubuko.com,布布扣sinxbubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣x+1bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+1bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣arccos1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣=πbubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
ebubuko.com,布布扣abubuko.com,布布扣=πbubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 , 而 a=lnπbubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 .

(4)limbubuko.com,布布扣x0bubuko.com,布布扣(ebubuko.com,布布扣xbubuko.com,布布扣+xbubuko.com,布布扣2bubuko.com,布布扣+3sinx)bubuko.com,布布扣1bubuko.com,布布扣2xbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 .

解答:

原极限bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣exp{limbubuko.com,布布扣x0bubuko.com,布布扣ln(ebubuko.com,布布扣xbubuko.com,布布扣+xbubuko.com,布布扣2bubuko.com,布布扣+3sinx)bubuko.com,布布扣2xbubuko.com,布布扣bubuko.com,布布扣}bubuko.com,布布扣exp{limbubuko.com,布布扣x0bubuko.com,布布扣1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣ebubuko.com,布布扣xbubuko.com,布布扣+xbubuko.com,布布扣2bubuko.com,布布扣+3sinxbubuko.com,布布扣bubuko.com,布布扣?(ebubuko.com,布布扣xbubuko.com,布布扣+2x+3cosx)}bubuko.com,布布扣ebubuko.com,布布扣2bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

 

2计算下列积分.

(1)求 cos(lnx)dxbubuko.com,布布扣 .

解答: 设 I=cos(lnx)dxbubuko.com,布布扣 , 则

Ibubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣xcos(lnx)?[?sin(lnx)]1bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣?xdxbubuko.com,布布扣xcos(lnx)+sin(lnx)dxbubuko.com,布布扣xcos(lnx)+[xsin(lnx)?cos(lnx)dx]bubuko.com,布布扣x[cos(lnx)+sin(lnx)]?I.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
I=x[cos(lnx)+sin(lnx)]bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣+C.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(2)bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣1bubuko.com,布布扣1+xbubuko.com,布布扣4bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dxbubuko.com,布布扣 .

解答: 设 I=bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣1bubuko.com,布布扣1+xbubuko.com,布布扣4bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dxbubuko.com,布布扣 , 则

I=bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣1+(1bubuko.com,布布扣tbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣4bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣d1bubuko.com,布布扣tbubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣tbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣1+tbubuko.com,布布扣4bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dt.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
Ibubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣1+xbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣1+xbubuko.com,布布扣4bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dxbubuko.com,布布扣1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣1bubuko.com,布布扣xbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+1bubuko.com,布布扣1bubuko.com,布布扣xbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+xbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dxbubuko.com,布布扣1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣1bubuko.com,布布扣(x?1bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣2bubuko.com,布布扣+2bubuko.com,布布扣bubuko.com,布布扣d(x?1bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣1bubuko.com,布布扣22bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣1bubuko.com,布布扣1+(x?1bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dx?1bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣πbubuko.com,布布扣22bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(3) 求 I=bubuko.com,布布扣Lbubuko.com,布布扣|y|dsbubuko.com,布布扣 , 其中 Lbubuko.com,布布扣 是球面 xbubuko.com,布布扣2bubuko.com,布布扣+ybubuko.com,布布扣2bubuko.com,布布扣+zbubuko.com,布布扣2bubuko.com,布布扣=2bubuko.com,布布扣 与平面 x=ybubuko.com,布布扣 的交线.

解答: 由对称性知

Ibubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣4bubuko.com,布布扣y=x0,z0bubuko.com,布布扣2xbubuko.com,布布扣2bubuko.com,布布扣+zbubuko.com,布布扣2bubuko.com,布布扣=2bubuko.com,布布扣bubuko.com,布布扣ydsbubuko.com,布布扣4bubuko.com,布布扣πbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣cosθbubuko.com,布布扣bubuko.com,布布扣cosbubuko.com,布布扣bubuko.com,布布扣θbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣cosbubuko.com,布布扣bubuko.com,布布扣θbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣sinbubuko.com,布布扣bubuko.com,布布扣θbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dθbubuko.com,布布扣4?πbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣?2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣22bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣π.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(4)求 I=?bubuko.com,布布扣Σbubuko.com,布布扣(x+y+z)bubuko.com,布布扣2bubuko.com,布布扣dSbubuko.com,布布扣 , 其中 Σ: xbubuko.com,布布扣2bubuko.com,布布扣+ybubuko.com,布布扣2bubuko.com,布布扣+zbubuko.com,布布扣2bubuko.com,布布扣=Rbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣 .

解答: 由对称性知

I=?bubuko.com,布布扣Σbubuko.com,布布扣(xbubuko.com,布布扣2bubuko.com,布布扣+ybubuko.com,布布扣2bubuko.com,布布扣+zbubuko.com,布布扣2bubuko.com,布布扣)dS=Rbubuko.com,布布扣2bubuko.com,布布扣?4πRbubuko.com,布布扣2bubuko.com,布布扣=4πRbubuko.com,布布扣4bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(5)已知函数 f(x)bubuko.com,布布扣 Rbubuko.com,布布扣 上连续可导, 求

I=bubuko.com,布布扣Lbubuko.com,布布扣1+ybubuko.com,布布扣2bubuko.com,布布扣f(xy)bubuko.com,布布扣ybubuko.com,布布扣bubuko.com,布布扣dx+xbubuko.com,布布扣ybubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣[ybubuko.com,布布扣2bubuko.com,布布扣f(xy)?1]dy,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
其中 Lbubuko.com,布布扣 是上半平面 {y>0}bubuko.com,布布扣 内以 (2,3)bubuko.com,布布扣 为起点, (3,2)bubuko.com,布布扣 为终点的有向分片光滑曲线.

解答: 由

?bubuko.com,布布扣?ybubuko.com,布布扣bubuko.com,布布扣1+ybubuko.com,布布扣2bubuko.com,布布扣f(xy)bubuko.com,布布扣ybubuko.com,布布扣bubuko.com,布布扣=?1bubuko.com,布布扣ybubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+f(xy)+xyfbubuko.com,布布扣bubuko.com,布布扣(xy),bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
?bubuko.com,布布扣?xbubuko.com,布布扣bubuko.com,布布扣{xbubuko.com,布布扣ybubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣[ybubuko.com,布布扣2bubuko.com,布布扣f(xy)?1]}=f(xy)+xyfbubuko.com,布布扣bubuko.com,布布扣(xy)?1bubuko.com,布布扣ybubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
Greenbubuko.com,布布扣 公式知
Ibubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣(2,3)bubuko.com,布布扣xy=6bubuko.com,布布扣(3,2)bubuko.com,布布扣1+ybubuko.com,布布扣2bubuko.com,布布扣f(xy)bubuko.com,布布扣ybubuko.com,布布扣bubuko.com,布布扣dx+xbubuko.com,布布扣ybubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣[ybubuko.com,布布扣2bubuko.com,布布扣f(xy)?1]dybubuko.com,布布扣bubuko.com,布布扣3bubuko.com,布布扣2bubuko.com,布布扣{[xbubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣+6bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣f(6)]+[xf(6)?xbubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣36bubuko.com,布布扣bubuko.com,布布扣]?(?6bubuko.com,布布扣xbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣)}dxbubuko.com,布布扣bubuko.com,布布扣3bubuko.com,布布扣2bubuko.com,布布扣xbubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣dxbubuko.com,布布扣5bubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(6)计算 I=?bubuko.com,布布扣Σbubuko.com,布布扣xdydz+zbubuko.com,布布扣2bubuko.com,布布扣dxdybubuko.com,布布扣xbubuko.com,布布扣2bubuko.com,布布扣+ybubuko.com,布布扣2bubuko.com,布布扣+zbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 其中 Σbubuko.com,布布扣 为下半球面 z=?1?xbubuko.com,布布扣2bubuko.com,布布扣?ybubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 的上侧.

解答: 由对称性知

Ibubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣Σbubuko.com,布布扣zbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣2bubuko.com,布布扣+ybubuko.com,布布扣2bubuko.com,布布扣+zbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dxdybubuko.com,布布扣?1bubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣xbubuko.com,布布扣2bubuko.com,布布扣+ybubuko.com,布布扣2bubuko.com,布布扣1bubuko.com,布布扣(1?xbubuko.com,布布扣2bubuko.com,布布扣?ybubuko.com,布布扣2bubuko.com,布布扣)dxdybubuko.com,布布扣?πbubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

 

3函数 z=f(x,y)bubuko.com,布布扣 有二阶连续偏导数且 fbubuko.com,布布扣bubuko.com,布布扣ybubuko.com,布布扣0bubuko.com,布布扣 . 证明: 对一切 cRbubuko.com,布布扣 , f(x,y)=cbubuko.com,布布扣 是一条直线的充要条件是

(fbubuko.com,布布扣bubuko.com,布布扣ybubuko.com,布布扣)bubuko.com,布布扣2bubuko.com,布布扣fbubuko.com,布布扣′′bubuko.com,布布扣xxbubuko.com,布布扣?2fbubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣fbubuko.com,布布扣bubuko.com,布布扣ybubuko.com,布布扣fbubuko.com,布布扣′′bubuko.com,布布扣xybubuko.com,布布扣+(fbubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣)bubuko.com,布布扣2bubuko.com,布布扣fbubuko.com,布布扣′′bubuko.com,布布扣yybubuko.com,布布扣=0.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

证明: 由

dbubuko.com,布布扣dxbubuko.com,布布扣bubuko.com,布布扣(dybubuko.com,布布扣dxbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣dbubuko.com,布布扣dxbubuko.com,布布扣bubuko.com,布布扣(?fbubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣bubuko.com,布布扣ybubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣?[fbubuko.com,布布扣′′bubuko.com,布布扣xxbubuko.com,布布扣+fbubuko.com,布布扣′′bubuko.com,布布扣xybubuko.com,布布扣(?fbubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣bubuko.com,布布扣ybubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣)]?fbubuko.com,布布扣bubuko.com,布布扣ybubuko.com,布布扣?fbubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣?[fbubuko.com,布布扣′′bubuko.com,布布扣yxbubuko.com,布布扣+fbubuko.com,布布扣′′bubuko.com,布布扣yybubuko.com,布布扣(?fbubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣bubuko.com,布布扣ybubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣)]bubuko.com,布布扣(fbubuko.com,布布扣bubuko.com,布布扣ybubuko.com,布布扣)bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?(fbubuko.com,布布扣bubuko.com,布布扣ybubuko.com,布布扣)bubuko.com,布布扣2bubuko.com,布布扣fbubuko.com,布布扣′′bubuko.com,布布扣xxbubuko.com,布布扣?2fbubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣fbubuko.com,布布扣bubuko.com,布布扣ybubuko.com,布布扣fbubuko.com,布布扣′′bubuko.com,布布扣xybubuko.com,布布扣+(fbubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣)bubuko.com,布布扣2bubuko.com,布布扣fbubuko.com,布布扣′′bubuko.com,布布扣yybubuko.com,布布扣bubuko.com,布布扣(fbubuko.com,布布扣bubuko.com,布布扣ybubuko.com,布布扣)bubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
f(x,y)=c 是直线bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣斜率 dybubuko.com,布布扣dxbubuko.com,布布扣bubuko.com,布布扣 是常数bubuko.com,布布扣(fbubuko.com,布布扣bubuko.com,布布扣ybubuko.com,布布扣)bubuko.com,布布扣2bubuko.com,布布扣fbubuko.com,布布扣′′bubuko.com,布布扣xxbubuko.com,布布扣?2fbubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣fbubuko.com,布布扣bubuko.com,布布扣ybubuko.com,布布扣fbubuko.com,布布扣′′bubuko.com,布布扣xybubuko.com,布布扣+(fbubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣)bubuko.com,布布扣2bubuko.com,布布扣fbubuko.com,布布扣′′bubuko.com,布布扣yybubuko.com,布布扣=0.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

 

4 讨论函数 \dps{x\sin\frac{1}{x}}xsin1bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 \dps{\sin\frac{1}{x}}sin1bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 \dps{(0,\infty)}(0,)bubuko.com,布布扣 上的一致连续性, 说明理由.

解答: 由 \bex \lim_{x\to 0}x\sin \frac{1}{x}=0,\quad \lim_{x\to \infty}x\sin \frac{1}{x} =\lim_{x\to \infty}\frac{\sin \frac{1}{x}}{\frac{1}{x}} =1 \eex

limbubuko.com,布布扣x0bubuko.com,布布扣xsin1bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣=0,limbubuko.com,布布扣xbubuko.com,布布扣xsin1bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣=limbubuko.com,布布扣xbubuko.com,布布扣sin1bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
\dps{x\sin\frac{1}{x}}xsin1bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 (0,\infty)(0,)bubuko.com,布布扣 上一致收敛. 又由 \bex \ba{cc} \sev{\frac{1}{n\pi}-\frac{1}{\sex{n+\frac{1}{2}}\pi}}\to 0\quad(n\to\infty),\\ \sev{\sin \frac{1}{\frac{1}{n\pi}}-\sin \frac{1}{\frac{1}{\sex{n+\frac{1}{2}}\pi}}}=1 \ea \eex
bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣nπbubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣(n+1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣)πbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0(n),bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣sin1bubuko.com,布布扣1bubuko.com,布布扣nπbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?sin1bubuko.com,布布扣1bubuko.com,布布扣(n+1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣)πbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
\dps{\sin\frac{1}{x}}sin1bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 (0,\infty)(0,)bubuko.com,布布扣 上不一致收敛.

 

5偶函数 f(x)f(x)bubuko.com,布布扣 的二阶导数 f‘‘(x)fbubuko.com,布布扣′′bubuko.com,布布扣(x)bubuko.com,布布扣 x=0x=0bubuko.com,布布扣 的某个邻域内连续, 且 f(0)=1f(0)=1bubuko.com,布布扣 , f‘‘(0)=2fbubuko.com,布布扣′′bubuko.com,布布扣(0)=2bubuko.com,布布扣 . 证明级数 \dps{\sum_{n=1}^\infty\sez{f\sex{\frac{1}{n}}-1}}bubuko.com,布布扣bubuko.com,布布扣n=1bubuko.com,布布扣[f(1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)?1]bubuko.com,布布扣 绝对收敛.

证明: 因 f(x)f(x)bubuko.com,布布扣 是偶函数, 而 f‘(x)fbubuko.com,布布扣bubuko.com,布布扣(x)bubuko.com,布布扣 为奇函数, f‘(0)=0fbubuko.com,布布扣bubuko.com,布布扣(0)=0bubuko.com,布布扣 , 于是由 TaylorTaylorbubuko.com,布布扣 展式知 \bex f(x)=f(0)+f‘(0)x+\frac{f‘‘(\xi)}{2}x^2,\quad x\in U(0). \eex

f(x)=f(0)+fbubuko.com,布布扣bubuko.com,布布扣(0)x+fbubuko.com,布布扣′′bubuko.com,布布扣(ξ)bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣2bubuko.com,布布扣,xU(0).bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
即有 \bex \sev{f\sex{\frac{1}{n}}-1} =\sev{\frac{f‘‘(\xi_n)}{2}\frac{1}{n^2}} \leq \frac{2}{n^2},\quad n\mbox{充分大}. \eex
bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣f(1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)?1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣′′bubuko.com,布布扣(ξbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣nbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣nbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣,n充分大.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
由比较判别法即知级数 \dps{\sum_{n=1}^\infty\sez{f\sex{\frac{1}{n}}-1}}bubuko.com,布布扣bubuko.com,布布扣n=1bubuko.com,布布扣[f(1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)?1]bubuko.com,布布扣 绝对收敛.

 

6函数 f:[0,1]\to (0,1)f:[0,1](0,1)bubuko.com,布布扣 [0,1][0,1]bubuko.com,布布扣 上可导, 且导函数不取 11bubuko.com,布布扣 . 证明: 方程 f(x)=xf(x)=xbubuko.com,布布扣 (0,1)(0,1)bubuko.com,布布扣 内有唯一的实根.

解答: 设 F(x)=f(x)-xF(x)=f(x)?xbubuko.com,布布扣 , 则 \bex F(0)=f(0)>0,\quad F(1)=f(1)-1<0, \eex

F(0)=f(0)>0,F(1)=f(1)?1<0,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
而由连续函数介值定理, \bex \exists\ \xi\in (0,1),\ s.t.\ F(\xi)=0, \eex
? ξ(0,1), s.t. F(ξ)=0,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
f(\xi)=\xif(ξ)=ξbubuko.com,布布扣 . 现若还有一 \xi\neq \eta\in (0,1)ξη(0,1)bubuko.com,布布扣 满足 F(\eta)=0F(η)=0bubuko.com,布布扣 , 则由 RolleRollebubuko.com,布布扣 定理, \bex \exists\ \zeta\mbox{ 在 }\xi\mbox{ 与 } \eta \mbox{ 之间 },\ s.t.\ F‘(\zeta)=0, \eex
? ζ  ξ  η 之间 , s.t. Fbubuko.com,布布扣bubuko.com,布布扣(ζ)=0,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
f‘(\zeta)=1fbubuko.com,布布扣bubuko.com,布布扣(ζ)=1bubuko.com,布布扣 , 这是一个矛盾. 总结而有 f(x)=xf(x)=xbubuko.com,布布扣 (0,1)(0,1)bubuko.com,布布扣 内有唯一的实根.

 

7设 f(x)f(x)bubuko.com,布布扣 [0,1][0,1]bubuko.com,布布扣 上可积, 在 x=1x=1bubuko.com,布布扣 处连续 证明: \bex \lim_{n\to\infty}n\int_0^1 x^{n-1}f(x)\rd x=f(1). \eex

limbubuko.com,布布扣nbubuko.com,布布扣nbubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣xbubuko.com,布布扣n?1bubuko.com,布布扣f(x)dx=f(1).bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

解答: 拟合如下 \bex & &\sev{n\int_0^1 x^{n-1}f(x)\rd x-f(1)} =\sev{n\int_0^1 x^{n-1}\sez{f(x)-f(1)}\rd x}\\ &\leq&\sev{n\int_0^{1-\delta} x^{n-1}\sez{f(x)-f(1)}\rd x} +\sev{n\int_{1-\delta}^1 x^{n-1}\sez{f(x)-f(1)}\rd x}\\ &\leq&2\max_{[0,1]}\sev{f}\cdot(1-\delta)^n +\max_{x\in [1-\delta,1]}\sev{f(x)-f(1)}\\ &=:&I_1+I_2. \eex

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=:bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣nbubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣xbubuko.com,布布扣n?1bubuko.com,布布扣f(x)dx?f(1)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣nbubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣xbubuko.com,布布扣n?1bubuko.com,布布扣[f(x)?f(1)]dxbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣nbubuko.com,布布扣1?δbubuko.com,布布扣0bubuko.com,布布扣xbubuko.com,布布扣n?1bubuko.com,布布扣[f(x)?f(1)]dxbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣nbubuko.com,布布扣1bubuko.com,布布扣1?δbubuko.com,布布扣xbubuko.com,布布扣n?1bubuko.com,布布扣[f(x)?f(1)]dxbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣2maxbubuko.com,布布扣[0,1]bubuko.com,布布扣|f|?(1?δ)bubuko.com,布布扣nbubuko.com,布布扣+maxbubuko.com,布布扣x[1?δ,1]bubuko.com,布布扣|f(x)?f(1)|bubuko.com,布布扣Ibubuko.com,布布扣1bubuko.com,布布扣+Ibubuko.com,布布扣2bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
于是对任意 \ve>0 , 由 f 1 处的连续性知 \bex \exists\ \delta\in (0,1),\ s.t.\ I_2<\frac{\ve}{2}, \eex
现对该 \delta , \bex \exists\ N\in \bbN,\ s.t.\ n\geq N\ra I_1<\frac{\ve}{2}. \eex
于是我们有 \bex \forall\ \ve>0,\ \exists\ N\in \bbN,\ s.t.\ n\geq N\ra \sev{n\int_0^1 x^{n-1}f(x)\rd x-f(1)}<\ve. \eex
这就证到了结论.

 

8 设函数 f(x,y) 在区域 D:x^2+y^2\leq 1 上有二阶连续偏导数, 且 \bex \frac{\p^2f}{\p x^2} +\frac{\p^2f}{\p y^2} =e^{-(x^2+y^2)}. \eex

证明: \bex \iint_D\sex{x\frac{\p f}{\p x}+y\frac{\p f}{\p y}}\rd x\rd y=\frac{\pi}{2e}. \eex

证明: 由 Green 公式 \bex \int_{\p \Omega}\frac{\p f}{\p {\bf n}}\rd s =\int_\Omega \lap f \rd x \eex

\bex \iint_D\sex{x\frac{\p f}{\p x}+y\frac{\p f}{\p y}}\rd x\rd y &=&\int_0^1 rdr\oint_{x^2+y^2=r^2}\sex{\frac{x}{r}\frac{\p f}{\p x} +\frac{y}{r}\frac{\p f}{\p y}}\rd s\\ &=&\int_0^1 rdr\iint_{x^2+y^2<r^2}\sex{\frac{\p^2f}{\p x^2}+\frac{\p^2f}{\p y^2}}\rd x\rd y\\ &=&\int_0^1 rdr\iint_{x^2+y^2<r^2}e^{-(x^2+y^2)}\rd x\rd y\\ &=&\int_0^1 rdr\int_0^r 2\pi se^{-s^2}\rd s\\ &=&\frac{\pi}{2e}. \eex
 

[家里蹲大学数学杂志]第35期四川大学2011年数学分析考研试题参考解答,布布扣,bubuko.com

[家里蹲大学数学杂志]第35期四川大学2011年数学分析考研试题参考解答

标签:style   class   c   code   ext   color   

原文地址:http://www.cnblogs.com/zhangzujin/p/3738149.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!