标签:blog io os sp for on div log bs
递推的方法推导错排公式 当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用M(n)表示,那么M(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推.
第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法;
第二步,放编号为k的元素,这时有两种情况.1,把它放到位置n,那么,对于剩下的n-2个元素,就有M(n-2)种方法;2,不把它放到位置n,这时,对于这n-1个元素,有M(n-1)种方法;
综上得到
M(n)=(n-1)[M(n-2)+M(n-1)]
特殊地,M(1)=0,M(2)=1
下面通过这个递推关系推导通项公式:
为方便起见,设M(k)=k!N(k), (k=1,2,…,n)
则N(1)=0,N(2)=1/2
n>=3时,n!N(n)=(n-1)(n-1)!N(n-1)+(n-1)!N(n-2)
即 nN(n)=(n-1)N(n-1)+N(n-2)
于是有N(n)-N(n-1)=-[N(n-1)-N(n-2)]/n=(-1/n)[-1/(n-1)][-1/(n-2)]…(-1/3)[N(2)-N(1)]=(-1)^n/n!
因此
N(n-1)-N(n-2)=(-1)^(n-1)/(n-1)!
N(2)-N(1)=(-1)^2/2!
相加,可得
N(n)=(-1)^2/2!+…+(-1)^(n-1)/(n-1)!+(-1)^n/n!
因此
M(n)=n![(-1)^2/2!+…+(-1)^(n-1)/(n-1)!+(-1)^n/n!]
可以得到
错排公式为M(n)=n!(1/2!-1/3!+…..+(-1)^n/n!)
#include<iostream> using namespace std; long long a[25]; long long C(int n,int m) { long long i,s=1,s1=1; for(i=1;i<=m;i++) { s=s*i; s1=s1*(n-i+1); } return s1/s; } int main() { int t,n,m,i; cin>>t; a[1]=0; a[2]=1; for(i=3;i<=20;i++) a[i]=(i-1)*(a[i-1]+a[i-2]); while(t--) { cin>>n>>m; cout<<a[m]*C(n,n-m)<<endl; } }
标签:blog io os sp for on div log bs
原文地址:http://www.cnblogs.com/myhlbl/p/4145963.html