标签:java leetcode 动态规划 dynamic programming
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
public class Solution {
int []f;
public int minimumTotal(List<List<Integer>> triangle) {
int size = triangle.size();
f = new int[(size+1)*(size)/2];
f[0] = triangle.get(0).get(0);
for(int i=1;i<size;i++){
for(int j=0;j<triangle.get(i).size();j++){
int left = i*(i-1)/2+j-1;
int right = i*(i-1)/2+j;
int cur = i*(i+1)/2+j;
int val = triangle.get(i).get(j);
if(j==0){
f[cur] = f[right]+val;
}else if(j==triangle.get(i).size()-1){
f[cur] = f[left]+val;
}else{
f[cur] = Math.min(f[left], f[right]) + val;
}
}
}
int res = f[size*(size-1)/2];
for(int j=size*(size-1)/2+1;j<f.length;j++){
res = Math.min(f[j], res);
}
return res;
}
}public class Solution {
int minRes = Integer.MAX_VALUE;
public int minimumTotal(List<List<Integer>> triangle) {
minimumTotal(triangle,0,0,0);
return minRes;
}
private void minimumTotal(List<List<Integer>> triangle,int sum,int size,int column){
if(size==triangle.size()){
minRes = Math.min(sum, minRes);
return;
}
sum += triangle.get(size).get(column);
minimumTotal(triangle,sum,size+1,column);
minimumTotal(triangle,sum,size+1,column+1);
}
}
标签:java leetcode 动态规划 dynamic programming
原文地址:http://blog.csdn.net/guorudi/article/details/41757405