标签:java leetcode 动态规划 dynamic programming
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
public class Solution { int []f; public int minimumTotal(List<List<Integer>> triangle) { int size = triangle.size(); f = new int[(size+1)*(size)/2]; f[0] = triangle.get(0).get(0); for(int i=1;i<size;i++){ for(int j=0;j<triangle.get(i).size();j++){ int left = i*(i-1)/2+j-1; int right = i*(i-1)/2+j; int cur = i*(i+1)/2+j; int val = triangle.get(i).get(j); if(j==0){ f[cur] = f[right]+val; }else if(j==triangle.get(i).size()-1){ f[cur] = f[left]+val; }else{ f[cur] = Math.min(f[left], f[right]) + val; } } } int res = f[size*(size-1)/2]; for(int j=size*(size-1)/2+1;j<f.length;j++){ res = Math.min(f[j], res); } return res; } }
public class Solution { int minRes = Integer.MAX_VALUE; public int minimumTotal(List<List<Integer>> triangle) { minimumTotal(triangle,0,0,0); return minRes; } private void minimumTotal(List<List<Integer>> triangle,int sum,int size,int column){ if(size==triangle.size()){ minRes = Math.min(sum, minRes); return; } sum += triangle.get(size).get(column); minimumTotal(triangle,sum,size+1,column); minimumTotal(triangle,sum,size+1,column+1); } }
标签:java leetcode 动态规划 dynamic programming
原文地址:http://blog.csdn.net/guorudi/article/details/41757405