//算法6.10 迪杰斯特拉算法 #include <iostream> using namespace std; #define MaxInt 32767 //表示极大值,即∞ #define MVNum 100 //最大顶点数 typedef char VerTexType; //假设顶点的数据类型为字符型 typedef int ArcType; //假设边的权值类型为整型 int *D=new int[MVNum]; //用于记录最短路的长度 bool *S=new bool[MVNum]; //标记顶点是否进入S集合 int *Path=new int[MVNum]; //用于记录最短路顶点的前驱 //------------图的邻接矩阵----------------- typedef struct{ VerTexType vexs[MVNum]; //顶点表 ArcType arcs[MVNum][MVNum]; //邻接矩阵 int vexnum,arcnum; //图的当前点数和边数 }AMGraph; int LocateVex(AMGraph G , VerTexType v){ //确定点v在G中的位置 for(int i = 0; i < G.vexnum; ++i) if(G.vexs[i] == v) return i; return -1; }//LocateVex void CreateUDN(AMGraph &G){ //采用邻接矩阵表示法,创建无向网G int i , j , k; cout <<"请输入总顶点数,总边数,以空格隔开:"; cin >> G.vexnum >> G.arcnum; //输入总顶点数,总边数 cout << endl; cout << "输入点的名称:,如a" << endl; for(i = 0; i < G.vexnum; ++i){ cout << "请输入第" << (i+1) << "个点的名称:"; cin >> G.vexs[i]; //依次输入点的信息 } cout << endl; for(i = 0; i < G.vexnum; ++i) //初始化邻接矩阵,边的权值均置为极大值MaxInt for(j = 0; j < G.vexnum; ++j) G.arcs[i][j] = MaxInt; cout << "输入边依附的顶点及权值,如a b 7" << endl; for(k = 0; k < G.arcnum;++k){ //构造邻接矩阵 VerTexType v1 , v2; ArcType w; cout << "请输入第" << (k + 1) << "条边依附的顶点及权值:"; cin >> v1 >> v2 >> w; //输入一条边依附的顶点及权值 i = LocateVex(G, v1); j = LocateVex(G, v2); //确定v1和v2在G中的位置,即顶点数组的下标 G.arcs[i][j] = w; //边<v1, v2>的权值置为w G.arcs[j][i] = G.arcs[i][j]; //置<v1, v2>的对称边<v2, v1>的权值为w }//for }//CreateUDN void ShortestPath_DIJ(AMGraph G, int v0){ //用Dijkstra算法求有向网G的v0顶点到其余顶点的最短路径 int v , i , w , min; int n = G.vexnum; //n为G中顶点的个数 for(v = 0; v < n; ++v){ //n个顶点依次初始化 S[v] = false; //S初始为空集 D[v] = G.arcs[v0][v]; //将v0到各个终点的最短路径长度初始化为弧上的权值 if(D[v] < MaxInt) Path [v] = v0; //如果v0和v之间有弧,则将v的前驱置为v0 else Path [v] = -1; //如果v0和v之间无弧,则将v的前驱置为-1 }//for S[v0]=true; //将v0加入S D[v0]=0; //源点到源点的距离为0 /*―初始化结束,开始主循环,每次求得v0到某个顶点v的最短路径,将v加到S集―*/ for(i = 1;i < n; ++i){ //对其余n-1个顶点,依次进行计算 min= MaxInt; for(w = 0; w < n; ++w) if(!S[w] && D[w] < min){ //选择一条当前的最短路径,终点为v v = w; min = D[w]; }//if S[v]=true; //将v加入S for(w = 0;w < n; ++w) //更新从v0出发到集合V?S上所有顶点的最短路径长度 if(!S[w] && (D[v] + G.arcs[v][w] < D[w])){ D[w] = D[v] + G.arcs[v][w]; //更新D[w] Path [w] = v; //更改w的前驱为v }//if }//for }//ShortestPath_DIJ void DisplayPath(AMGraph G , int begin ,int temp ){ //显示最短路 if(Path[temp] != -1){ DisplayPath(G , begin ,Path[temp]); cout << G.vexs[Path[temp]] << "-->"; } }//DisplayPath void main() { cout << "************算法6.10 迪杰斯特拉算法**************" << endl << endl; AMGraph G; int i , j ,num_start , num_destination; VerTexType start , destination; CreateUDN(G); cout <<endl; cout << "*****无向网G创建完成!*****" << endl; for(i = 0 ; i < G.vexnum ; ++i){ for(j = 0; j < G.vexnum; ++j){ if(j != G.vexnum - 1){ if(G.arcs[i][j] != MaxInt) cout << G.arcs[i][j] << "\t"; else cout << "∞" << "\t"; } else{ if(G.arcs[i][j] != MaxInt) cout << G.arcs[i][j] <<endl; else cout << "∞" <<endl; } } }//for cout << endl; cout << "请依次输入起始点、终点名称:"; cin >> start >> destination; num_start = LocateVex(G , start); num_destination = LocateVex(G , destination); ShortestPath_DIJ(G , num_start); cout << endl <<"最短路径为:"; DisplayPath(G , num_start , num_destination); cout << G.vexs[num_destination]<<endl; }//main
原文地址:http://blog.csdn.net/holyang_1013197377/article/details/41761211